笔记 链接到标题

    / [pdf]

无法加载 HTML 文件。

模拟电路笔记
Tsui Dik Sang
2024.10-2025 2 25
V1
SINE(0 1 100)
R1
1k
R11
1k
R2
100k
R3
100k
R4
1Meg
C1
0.019µ
R5
10k
R8
5k
R9
5k
R6
10k
R12
10k
D1
BZX84C3V3L
D2
BZX84C3V3L
R10
5k
R7
10k
V2
12
V3
12
S1
MYSW
U1
OP07
U2
OP07
U3
OP07
.model BZX84C4V4L ako: BZX84C3V3L bv=4.4
.tran 0 0.2 0.1
.inc "LM324 SPICE MODEL .MOD"
.model MYSW SW( Ron=1 Roff=1000000000 Vt=0 Vh=0)
--- D:\
中山大
\
课内活
\
EE basic\
模拟电
\
作业
\
HW9\7_29.asc ---
模拟电路笔记 Tsui Dik Sang
2
目录
第一章 基本模拟电器元件 13
1.1
二极管
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.1 半导体 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.1.1 本征半导体 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.1.2 杂质半导体 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.2 PN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.2.1 导电机理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.2.2 电流描述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.2.3 电容 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.3 实际电路使用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.3.1 原函数直接分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.3.2 近似分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.3.3 微变等效电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.4 恒压二极管 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.4.1 基本参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.5 其他二极管 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.5.1 发光二极管 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.5.2 光电二极管 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.5.3 肖特基二极管 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 三极管 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.1 基本结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2 放大电路的应用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2.1 没有交变信号的时候 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2.2 存在交变信号的时候 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.2.3 输出电压变换 ce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.3 共射特性曲线 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.3.1 输入特性曲线 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.3.2 输出特性曲线 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.4 主要参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.4.1 直流参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.4.2 交流参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.4.3 极限参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.5 温度对其的影响 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 场效应管 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.1 结型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.1.1 u
DS
= 0 时的工作原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3
目录 模拟电路笔记 Tsui Dik Sang
1.3.1.2 u
DS
̸= 0 时的工作原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2 绝缘栅型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.2.1 工作原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.2.2 特性曲线 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.3 耗尽型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 总结 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
第二章 基本放大电路 25
2.1 放大电路的粗略认识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.1 参数以及定义介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.1.1 定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 分析新思路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2.1 静态工作点 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 图解法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.3.1 线性函数关系建立 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.3.2 非线性失真 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.3.3 最大不失真电压 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.3.4 考虑负载的图解法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 等效电路分析法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 直流模型等效 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 h 参数等效法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2.1 方程建立 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2.2 电路搭建与简化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2.3 二极管内部的简化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 BJT 基本放大电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 共射动态分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 温度稳定电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2.1 目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2.2 直流分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2.3 交流分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 共集放大 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3.1 静态 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3.2 动态分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4 共基放大电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4.1 静态分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4.2 动态分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 场效应管的放大电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.1 基本共源电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.2 静态工作点 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.3 改进电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.3.1 自给偏压性电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.3.2 分压式偏置电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.4 MOS 管的 h 参数动态分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.4.1 微分方程构建 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.4.2 等效电路图绘制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.4.3 参数分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4
目录 模拟电路笔记 Tsui Dik Sang
2.4.5 动态分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.5.1 共源 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.5.2 共漏 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 基本派生电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
第三章 集成运放电路 39
3.1 多级放大电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.1 常规电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.1.1 直接耦合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.1.2 阻容耦合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.1.3 变压耦合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.1.4 光电耦合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 抽象定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 差分放大电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 静态工作点分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 经典动态分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2.1 共模信号 (u
c
=
u
1
+u
2
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2.2 差模信号 (u
d
= u
1
u
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 双入单出直流 & 交流 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3.1 直流分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3.2 差模分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3.3 共模分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3.4 双入单出总结 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.4 单入双出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.5 单入单出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.6 四种输入输出电路归纳 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 改进型差分电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 初步改进 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1.1 电流源的引入 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1.2 调零电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1.3 场效应管差分电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 电流源电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2.1 镜像电流源 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2.2 比例电流源 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2.3 微电流源 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2.4 多路电流源电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2.5 以电流源为有源负载的放大电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.3 (直接耦合互补) 输出级 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.3.1 提高最大不失真电压 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.3.2 消除交越失真:微导通电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 具体的集成运放电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.1 电路分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.2 关于极性的判断 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.2.1 理论判断法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.2.2 粗暴法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.3 F007 电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5
目录 模拟电路笔记 Tsui Dik Sang
3.5.3.1 输入级 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.3.2 中间级 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.3.3 输出级 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 集成运放电路的抽象分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.1 基本组成 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.2 主要性能指标 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.2.1 开环差模增益: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.2.2 共模抑制比 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.2.3 失调电压 U
IO
以及温漂
dU
IO
dT
: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.2.4 失调电压 I
IO
以及温漂
dI
IO
dT
: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.2.5 输入偏置电流 (静态) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.2.6 最大共模输入电压 U
Icmax
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.2.7 最大差模输入电压 U
Idmax
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.2.8 -3dB 带宽 f
H
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.2.9 单位增益带宽 f
c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.2.10 转换速率 SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.3 函数化的抽象 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.4 种类及选择 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.4.1 高阻型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.4.2 高速型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.4.3 高精度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.4.4 低功耗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6.4.5 通用型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6.5 集成运放的保护措施 (抽象分析) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
第四章 放大电路的频率响应 57
4.1 电路理论知识恶补 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.1 阻抗的定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Miller 定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 研究方法引入 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.1 简单频率响应地电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.1.1 高通电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.1.2 低通电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.1.3 三个特殊的点 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.1.4 总体分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 波特图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 晶体管的高频等效模型 (混合 π 模型) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 建立模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1.1 初步模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1.2 一次近似 (利用大电阻断路) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1.3 二次近似 (利用 Miller 定理) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 参数研究 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2.1 r
b
e
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2.2 C
µ
, f
T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2.3 β(放大倍数的频率响应) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 单管放大的频率响应 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6
目录 模拟电路笔记 Tsui Dik Sang
4.4.1 中频 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.2 低频 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.3 高频 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.4 波特图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.5 增益带宽积 (改善频率响应) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.5.1 对于低频 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.5.2 对于高频 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 多级放大电路的频率响应 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
第五章 反馈 67
5.1 反馈的判断 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.1 判断有无 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.2 正负反馈 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.2.1 分立元件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.3 三角形 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.4 直流 or 交流 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 四种组态 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.0.1 电压串联负反馈 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.0.2 电流串联负反馈 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.0.3 电压并联反馈 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.0.4 电流并联反馈 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.1 反馈类型的判断 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 负反馈的抽象分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.1 负反馈的放大倍数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 深度负反馈 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.3 虚短虚断 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.4 反馈电路对电路参数的影响 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.4.1 反馈系数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.4.2 R
i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.4.3 R
o
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.4.4 频带 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.4.5 减小非线性失真 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.5 选用合适的反馈 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 自激振荡 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.1 产生分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.2 判断方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.3 滞后补偿 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.3.1 简单滞后补偿 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.3.2 RC 滞后补偿 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.3.3 密勒补偿 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
第六章 信号的运算和处理 75
6.1 基本运算电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1.1 比例运算电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1.1.1 反相 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1.1.2 T 形网络反相比例运算电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7
目录 模拟电路笔记 Tsui Dik Sang
6.1.1.3 同相比例电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.1.2 电压跟随器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 加减运算电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.1 并联叠加 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.2 串联叠加 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 积分和微分运算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.1 积分电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.2 微分电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.2.1 简单微分电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.2.2 实用性微分电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.2.3 逆函数微分运算电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 对指数运算 (不出大题) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4.1 对数运算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4.1.1 二极管对数运算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4.1.2 晶体管对数运算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.1.3
集成对数运算
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.2 指数运算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.2.1 基本指数运算 (晶体管) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.2.2 集成指数运算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.3 利用指对数来实现乘除法电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5 误差与性能 (从略) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6 模拟乘法器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6.1 抽象分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6.2 变跨导型模拟乘法器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6.2.1 差分电路的差模传输特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.6.3 可控恒流源差分放大电路 (增添 u
Y
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.6.4 四象限跨导乘法器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.6.5 乘法器的组合运用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.6.5.1 乘方运算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.6.5.2 除法运算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.6.5.3 平方根运算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.6.5.4 高次方运算 & 高次方根运算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.7 滤波电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.7.1 无源滤波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.7.2 低通滤波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.7.2.1 一阶电路: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.7.2.2 二阶电路: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7.2.3 压控电压源低通滤波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7.2.4 反向输入 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7.3 高通滤波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7.4 带通滤波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7.4.1 压控电压源带通滤波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.7.5 带阻滤波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.7.5.1 T 带阻滤波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.7.5.2 实用型带阻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8
目录 模拟电路笔记 Tsui Dik Sang
6.7.6 全通 or 状态变量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
第七章 波形的发生和信号的转换 85
7.1 电压比较器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.1 抽象定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.2 单限比较器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.2.1 过零比较器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.2.2 一般单限比较器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.3 滞回比较器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.3.1 对称的滞回比较器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.3.2 一般滞回比较器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.1.3.3 更一般的滞回比较器
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.1.4 窗口比较器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.1.5 集成电压比较器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2 非正弦信号发生器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2.1 矩形波发生器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2.1.1 一般矩形波发生器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2.1.2 占空比可调的矩形波发生器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2.2 三角波发生电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2.3 锯齿波发生电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2.3.1 频率不变的锯齿波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2.3.2 频率增倍的锯齿波 (三角波转锯齿波) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2.4 更多发生器以及其相组合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3 正弦信号发生电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3.1 原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3.1.1 组成部分 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3.1.2 判断方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3.2 RC 正弦振荡 (文氏桥震荡电路) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3.2.1 选频网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3.2.2 可调频率的电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.3 LC 振荡电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
第八章 功率放大电路 91
8.1 定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.1.1 性能指标 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.1.1.1 最大输出功率 (有效值!)P
om
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.1.1.2 转换效率 η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.1.2 分析方法:图解法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2 具体类型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2.1 甲类:晶体管在整个周期都导通 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2.2 单管变压器耦合放大电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2.2.1 缺点 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2.2.2 优点 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2.3 乙类:只有半个周期导通 (推挽) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2.3.1 变压器耦合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2.3.2 OTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9
目录 模拟电路笔记 Tsui Dik Sang
8.2.3.3 OCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3 互补输出级 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3.1 改善 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3.2 计算步骤 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3.2.1 P
om
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3.2.2 P
v
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3.2.3 η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3.3 晶体管参数选择 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3.3.1 最大管压降 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3.3.2 集电极最大电流 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3.3.3 集电极最大功耗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3.3.4 总结 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
第九章 直流电源 95
9.1 整流电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.1.1 单相半波整流 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.1.1.1 波形分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.1.1.2 二极管参数选择 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.1.2 单相桥式整流 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.1.2.1 故障分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.1.2.2 整流分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.1.2.3 二极管选择 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.1.3 中点接地的桥式整流 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.2 滤波电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.2.1 电容滤波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.2.1.1 导通角与脉动系数的矛盾 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.2.2 电感滤波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.2.3 倍压整流电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.3 稳压电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.3.1 抽象性能参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.3.1.1 稳压系数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.3.1.2 输出电阻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.3.2 稳压管稳压电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.3.2.1 稳压范围 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.3.2.2 限流电阻 R 的选择 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.3.3 串联型稳压电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3.3.1 基本调整管电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3.3.2 具有放大环节的串联型稳压电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3.4 三端稳压器:W7800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3.4.1 基本应用电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3.4.2 电流扩展基本电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3.4.3 输出电压可调的稳压电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.3.4.4 实用性输出可调电路 (增添集成运放) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.3.5 三端变压器:W1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
第十章 笔记完结 101
10
写在笔记之前
模电确实还是很抽象的,用到的数学知识不难,无非就是加减乘除,最多多一点简单的微分积分,但是却搭建出了非常精妙
的电路,从二极管开始,为了实现控制功能,有了一堆的晶体管 MOS 管,整出放大电路,然后为了消除误差引入了差分电路,
后是进一步的重组优化,从输入级到中间级到输出级,每一个部分都值得优化研究,也均有前人科学家工程师设计出了很多的结
构。以至于在集成之前的内容理解起来有难度。这也是笔者做这个笔记的原因,希望能理清楚前面章节的内容,并对课本中部分
结论抽象且证明模糊的地方给出自己查阅资料后的理解。
之后,为了让后人花更多精力去研究应用,前面所说的一切——集成了!
1
集成运放实际上就是一个函数模拟器,在有
反馈的线性区提供虚短虚断的函数关系系统,在非线性区提供比较器这种逻辑函数系统,由此也实现了很多的功能。
在最后的最后,这个课本还研究了一下功率以及直流电源等内容,但是受课时限制,我们的课并不要求太多,笔者在这部分
的笔记也就显得简略了。
这本笔记中大部分内容都是课本,其实也正是对课本中内容的理解性记录,笔者也通过写这个笔记的过程建立起了对模电更
体系化的理解,在最终的期末中也取得了满意的结果,希望在助笔者完成期末复习之后能对后来看这本笔记的人,想要自学模电
的人一点帮助!如有疏漏请联系cuidsh@mail2.sysu.edu.cn , 欢迎指正!
Tsui Dik Sang
—2025.1.9
1
因此实际上在集成运放出现之后的内容在理解上反而会比前面的。
11
目录 模拟电路笔记 Tsui Dik Sang
12
第一章 基本模拟电器元件
首先,来看看其本质物理结构:半导体
1.1 二极管
1.1.1 半导体
1.1.1.1 本征半导体
其中载流子 (即参与导电的粒子)
自由电子
空穴
在纯净的半导体中实际上这两种粒子都非常少,处于一种激发/动态平衡之中。并且与温度有密切关系,半导体物理
可以推导出下面的公式
n
i
= p
i
= K
1
T
3
2
e
E
GO
2kT
(1.1)
也就是说
T
C(载流子浓度)↑
R(电阻)↓
1.1.1.2 杂质半导体
• N(五价)(如磷), 主要由多出来的自由电子导电
• P(三价)(如硼),主要由多出来的空穴导电
对于参与导电的自由电子或者空穴,我们称为非平衡少子(P N 的非平衡少子不同) 上面两种材料放在一起,我们就得到
了:PN
13
1.1 二极管 模拟电路笔记 Tsui Dik Sang
1.1.2 PN
1.1.2.1 导电机理
P 型半导体和 N 型半导体放在一起
自由电子和空穴开始相互扩散
形成内电场,部分粒子开始逆浓度梯度运动(漂移运动)
两种运动处于动态平衡
正接(”+” P
内电场削弱
扩散运动 ,漂移运动
导通
反接(”+” N
内电场增强
扩散运动 ,漂移运动
截止
1.1.2.2 电流描述
当然,其实书本对这个过程的描述还是偏理解的,原理上应该更复杂,但是对于不搞微电子的来说已经够用了,根据半导体
物理可以定量推出下面的方程
i = I
S
(e
u
U
T
1), U
T
=
kT
q
(1.2)
对于方程的具体细节我们不需要知道,但是我们在之后会常常用到这个函数的曲线,其也就是二极管的伏安特性曲线
1.1.2.3 电容
首先在为什么会有电容?因为有电荷的积累,那么电荷是怎么样积累的?我们可以发现虽然在导通后有恒定的电流,但是电
荷的积累还是存在的,其体现在了浓度差上,
c
耗尽层界面
> c
外围
(1.3)
这样才能使得扩散运动得以在外电场的作用下一直进行,由此就产生了扩散电容C
d
而关于势垒电容C
b
, 书中其实没有详细解释,
我们只需要记住其是由于耗尽层内部的机理产生的就行了
并且,总电容是
C
j
= C
d
+ C
b
(1.4)
从表达式来看着两个电容是并联的,与直观上我们的感觉不同,我觉得你可以理解成下面的图片
1.1.3 实际电路使用
1.1.3.1 原函数直接分析
实际上就是对刚刚电流方程1.2图像的分析 从图中可以看到一些基本参数
I
F
(正向最大电流 (图中没有画出来))
14
第一章 基本模拟电器元件 模拟电路笔记 Tsui Dik Sang
1.1: 二极管伏安特性曲线
U
R
(最高反向工作电压) 一半的击穿电压 (有点奇怪)
U
on
开启电压
U 导通电压,一般大于 U
on
, 对于不同的二极管由于非线性可能会有所不同,但是对于确定的晶体管都是一样的
I
R
(
小于
I
S
的电流越小,单向导通越好
)
I
S
(较大但未击穿时的电压时的电流
1
)
f
M
高于此值时,截电容的效果明显
1.1.3.2 近似分析
三种近似
1.2: 理想开关 1.3: 有分压的开关 (恒压器) 1.4: 有线性分压的开关
1.5: 三种开关的示意图
1
另一种说法是他也叫反向电流,其越小反应出二极管的单向导电性越好
15
1.1 二极管 模拟电路笔记 Tsui Dik Sang
然后对含二极管的电路分析实际上就是用输出伏安曲线与上面的三种情况作交点,具体选取哪一种近似模型要看交点的大致
位置。
对于静态电路 (直流线性电路),输出伏安曲线比较固定,容易分析,下面我们开看看动态信号的分析
1.1.3.3 微变等效电路
将一个微小的交流信号加在原来的直流信号上,然后求由这个微变信号产生的动态电阻 r
d
=
u
D
i
D
1.6: 微变等效伏安特性
实际上的分析就是求导的过程,即
1
r
d
=
i
D
u
D
=
d
[
I
S
(
e
u
U
T
1)]
du
I
S
U
T
· e
u
U
T
I
D
U
T
(1.5)
Q 点是微小信号加在的直流信号 (在后面我们会知道这个叫静态工作点)
1.1.4 恒压二极管
1.7: 恒压二极管
直接理解为一个稳定分压的器件就行了,但是要注意!反向导通才体现恒压性.
1.1.4.1 基本参数
I
Z
(稳定电压,也就是在开始稳压时的最小电流)
I
ZM
(最大稳定电流,超过之后稳压型变差,甚至会有反向击穿的风险)
16
第一章 基本模拟电器元件 模拟电路笔记 Tsui Dik Sang
U
Z
(稳压值)
P
W
= U
Z
· I
ZM
r
z
=
U
I
(动态电阻,实则就是斜率,越接近于 0 越好)
α(温度系数,单位是 V/°C,有正有负,精密的恒压管一班会将两个正负相反的管子相接来进一步减小 α)
1.1.5 其他二极管
1.1.5.1 发光二极管
1.1.5.2 光电二极管
1.1.5.3 肖特基二极管 *
肖特基二极管利用金属与半导体之间的肖特基势垒形成的接触来实现整流功能,而不是传统的 PN 结。
为什么要有这样的设计呢?
因为正常的二极管在通交变电流时在电流反向的瞬间由于耗尽层的形成,会形成一个反向的短暂电流,然后经过一个反应时
(大概 2µs) 后才会反向截止,当交变电流频率很高时,其反向截止效果不明显。而肖特基二极管使用金属作为 P 极,从而减
少了这种反应电流,也就使得其在较高频电流情况下的反向截止特性要优于普通二极管(b 站视频解释图). 这个其实用能带理论
更容易解释。
1.2 三极管
1.2.1 基本结构
1.8: 电路结构 1.9: 实际构造 1.10: 示意图
我们看图中 c e 好像是对称的,但是实际上,c e 宽多了 (1.9),因为集电极需要用来收集电子的,所以会比发射极
更宽而我们之后讲到的结形场效应管 (JEFT) 则是对称的 (1.15)
在下面探究晶体管的性质时我们都只考虑 NPN 型,PNP 的话将图像关于原点转 180° 即可
1.2.2 放大电路的应用
1.2.2.1 没有交变信号的时候
首先,我们简化问题,不看扰动,先看放大,,即先令 u
1
= 0
从物理上分析三个是指电流的机理 (也就是图1.12中的电流分析)
1. e 处电子在负极的排斥 + 扩散运动下到 b c 形成发射电流 I
E
17
1.2 三极管 模拟电路笔记 Tsui Dik Sang
1.11: 放大电路图 1.12: 放大原理解释
2. 刚刚 1 提到的电子大部分与基极空穴结合,形成基极电流 I
B
3. 没有在 2 的过程中与 b 复合的非平衡少子进一步到达 c,漂移运动形成集电极电流 I
C
从数值上由下面的等式
I
E
=
I
EN
+
E
EP
=
E
CN
+
I
BN
+
I
EP
;
I
C
= I
CN
+ I
CBO
;
I
B
= I
BN
+ I
EP
I
CBO
= I
B
I
CBO
(1.6)
这里注意 I
CBO
B E 之间直接的载流子漂移运动,数目较少而 I
CN
是刚刚 3 中提到的过程,数目较大现在我们直接从结
果上去定义放大系数
2
β =
I
CN
I
B
=
I
C
I
CBO
I
B
+ I
CBO
(1.7)
进一步推导,
I
C
= βI
B
+ (1 + β)I
CBO
= βI
B
+ I
CEO
(1.8)
然后定义出 I
CEO
I
B
时的 I
C
并且在一般情况下有
I
B
>> I
CBO
β >> 1
I
C
βI
B
I
E
(1 + β)I
B
(1.9)
1.2.2.2 存在交变信号的时候
u
1
̸= 0, 此时定义 β =
i
C
i
B
, 其实际上是非线性的,但是实验上两者数目约等于,所以可以近似为相等
1.2.2.3 输出电压变换 ce
刚刚讨论的都是以 c 为输出电流的情况,我们同样可以用 e 作为输出端,那么就可以定义另外一个放大倍数
¯α =
I
C
I
E
=
I
CN
+ I
CBO
I
E
(1.10)
从而容易推到
¯
β =
¯α
1 ¯α
(1.11)
如果仍使用前面的假设1.9,那么 α ¯α 1
2
不要问为什么会线性放大,看图1.12比较直观,但是具体机理书上并没有解释清楚
18
第一章 基本模拟电器元件 模拟电路笔记 Tsui Dik Sang
1.2.3 共射特性曲线
3
1.13: 输入特性曲线 1.14: 输出特性曲线
1.2.3.1 输入特性曲线
i
B
= f (u
BE
)
U
CE
=常数
(1.12)
U
CE
= 0, 即相当于 B E 构成一个普通的 PN
U
CE
,即前面漂移运动加剧,那曲线就自然右移了
U
CE
1V , 可认为非平衡少子都过去了
4
1.2.3.2 输出特性曲线
i
B
= f (u
CE
)
I
B
=常数
(1.13)
1. 截止区
U
BE
U
ON
(BE 未开)
U
CB
> 0(BC 反向偏置)
i
C
I
CEO
0
5
2. 放大区
U
BE
U
ON
(BE 导通了 (正向偏置))
U
CB
> 0(BC 仍然反向偏置)
i
c
βi
B
3. 饱和区
U
BE
U
ON
U
CB
< 0
(都正向导通了) i
c
u
CE
的关系更紧密,对I
B
的依赖不大
这里我们还要留意一个特殊的点:即饱和区与放大区的交界点,我们称其为临界放大点,这时候 U
CB
= 0, 所以 U
CE
= U
BE
果我们讨论的是小功率的晶体管,可以认为在饱和区上面的近似关系也成立
3
在后面学放大电路的时候我们会了解到这种电路叫做共射放大电路
4
为什么 i
b
不会被 CE 的强电压抑制复合吗?
5
此处对这个小于号由疑问
19
1.3 场效应管 模拟电路笔记 Tsui Dik Sang
1.2.4 主要参数
1.2.4.1 直流参数
1. 共射放大系数
¯
β
2. 共射放大系数 ¯α
3. 极间放大电流 I
CBO
, I
CEO
1.2.4.2 交流参数
1. 共射放大系数 β
2. 共射放大系数 α
3. 特征频率 f
T
1.2.4.3 极限参数
1. P
CM
= i
C
u
CE
= 常数(对于一个确定的管来说)
6
2. I
CM
(I 太大的话会让 β 显著减小)
3. U
(BR)CBO
, U
(BR)CEO,U
(BR) EBO
(击穿电压)
1.2.5 温度对其的影响
T↑
1. 1.13左移,(实际上就是与二极管的性质一样)
2. 1.14的曲线均上衣,且差距也变大,即 β 增大时候电流的变化
3. I
CBO
, I
CEO
= (1 + β) 均变大 (热运动激烈了)
1.3 场效应管
1.3.1 结型
1.15: 实际结构以及电路表示
可以看到 g 极本身 ( g 引出的两条线) 以及 d s 是比较对称的,因此实际上 d s 是可以互换使用的
7
6
所以对应在图像上是一条双曲线
7
但是三极管就不行,还记得吧
20
第一章 基本模拟电器元件 模拟电路笔记 Tsui Dik Sang
1.3.1.1 u
DS
= 0 时的工作原理
1.16: u
GS
= 0 1.17: U
GS(of f)
< u
GS
< 0 1.18: U
GS(of f)
u
GS
注意,u
GS
都是负值,所以图中的这三种状态其值都小于零但是如果用绝对值去比的话符号全部都要反过来
1.16,
耗尽层很窄,
ds
几乎处于导通的状态
1.17,
u
GS
耗尽层宽度
电阻
1.18电阻 →∞(断路!)
1.3.1.2 u
DS
̸= 0 时的工作原理
下面我们只分析 u
DS
> 0 的情况,反向的话取对称就行了。
1.19: u
GD
> U
GS(of f)
1.20: u
GD
> U
GS(of f)
= 0 1.21: u
GD
< U
GS(of f)
注意,u
GS
此处仍是负值并且实际上可以发现,这三个图实际上是在用 u
GD
= u
GS
u
DS
代换了 u
GD
代换了 u
GS
, 可以
理解为一种上下的对称性破却,使得上面更容易夹断了下面分析 u
DS
增大时候电流的变化
(可变电阻区)1.19, 仍是导通,如果在考虑电阻的情况下则表现出电阻性
8
(恒流区)1.20, 出现预夹断,即只有一边接近夹断,另一边仍远未到夹断,这时有 u
DS
增大有两个因素在影响电流
耗尽层厚度
导电区域
电阻
u
DS
电流增大
实验说明这两种效果是抵消的,也就是说之后 i
D
基本不随因此会出现恒流区
8
电压与电流成正比
21
1.3 场效应管 模拟电路笔记 Tsui Dik Sang
(夹断区)1.21, 此时由于 u
GS
的缘故让管子基本上夹断了,导致最后几时恒流,电流也很低,或者可以直接理解为都没有导
(击穿区)u
DS
max,则会出现击穿区,在下面的曲线中可以看到曲线上翘
综上,我们就可以画出输出特性曲线
9
1.22: JEFT 输出特性 1.23: JEFT 转移特性曲线
而想要研究 u
GS
与电流的关系,我们就要借助转移特性曲线了,其实相当于是对曲线族找规律。通过半导体物理,可以
理描述其方程
i
D
= I
S
1
u
GS
U
GS(of f)
2
(1.14)
注意,还是那句话:u
GS
都是负值 下面要定义的低频跨导就是从图上来的
g
m
=
i
D
u
GS
U
DS
=常量
(1.15)
所谓跨导,就是因为比值是输出电流与输入电压的比值。然后为什么要“跨”呢,因为不同于晶体管,JEFT 的输入电流基
本为零,这也是其一大优势!
1.3.2 绝缘栅型
1.24: 增强型实际结构 1.25: 电路符号
此种场效应管的 g 极注意是被绝缘层遮挡的,并不能导通!
9
由于输入 i
g
几乎为零,因此只关注输出曲线
22
第一章 基本模拟电器元件 模拟电路笔记 Tsui Dik Sang
1.3.2.1 工作原理
u
DS
= 0 时,g 处无电流,但排斥要 P 区空穴,剩下大量电子 (不能移动),形成反型层于是 s d 就通过这个层连通
可导了 u
DS
̸= 0,同样的出现了对称性破却的情况,反型层倾斜,于是同样的有了预夹断之类的情况
10
,分析从略
1.26: u
DS
= 0 1.27: u
DS
̸= 0
1.3.2.2 特性曲线
1.28: 输入 1.29: 输出
对于输入曲线,物理推出
i
D
= I
DO
U
GS
U
GS(th)
1
2
(1.16)
注意,这是二次曲线,也就意味着曲线并没有二极管这么陡峭了
1.3.3 耗尽型
只需要将 SiO
2
绝缘层变为含大量正离子的导电层,那么相当于条件变宽,无需 u
GS
存在
11
也存在反型层,那么相应的分析
也从略,曲线作相应的位移即可
1.4 总结
参见书本 p
4142
的图像即可,那里已经很详细了。
10
条件是 u
DS
U
GS
U
GS(th)
11
u
GS
= 0 时候
23
1.4 总结 模拟电路笔记 Tsui Dik Sang
24
第二章 基本放大电路
2.1 放大电路的粗略认识
2.1.1 参数以及定义介绍
2.1.1.1 定义
定义 2.1.1. 本质上是在不失真前提下对功率的放大,从而实现能量的控制和装换。
其基本的电路示意图如下2.1
2.1: 放大电路示意图
其中放大倍数有四个 A
uu
(A
u
), A
ui
, A
iu
, A
ii
(A
i
),根据需要自取。
一些基本的参数如下
输入电阻
输出电阻
通频带 (太高不好,太低也不好,有 f
L
f
H
1
)
还有非线性失真的概念,我们将会在之后讲到
2.1.2 分析新思路
2.1.2.1 静态工作点
即要求在直流状态下也工作在放大区,不会出现失真或者二极管无法导通的情况 (之后会详细分析)
首先我们明确一下按照叠加原理的直流通路以及交流通路的分析方法:
直流分析电容视为开,交流视为短 (但是保留其内阻)
直流分析电容视为短,直流视为短 (但是保留其内阻)
对于1.11 通过直流分析我们可以得到静态工作点,也就是
I
BQ
=
V
BB
U
CEQ
R
b
I
CQ
= βI
CQ
= βI
CQ
U
CEQ
= V
CC
I
CQ
R
c
(2.1)
1
放大倍数 A 降低为原来的
1
2
时的临界频率
25
2.1 放大电路的粗略认识 模拟电路笔记 Tsui Dik Sang
经过放大后就有一个偏移量,同时如果我们考虑动态分析
2.2: 直接耦合电路 2.3: 阻容耦合 I
i
B
i
C
U
R
c
u
0
(2.2)
也就是说放大之后是反号的。
我们分别来看看着两个电路的静态分析
I
BQ
=
V
CC
U
BEQ
R
b
2
U
BEQ
R
b
1
(对节点 B KCL)
I
CQ
= βI
BQ
= βI
BQ
U
CEQ
= V
CC
I
CQ
R
C
(输出回路的 KVL)
(2.3)
再看“阻容耦合”C
1
的存在使得直流部分无需通过 R
b
1
,而 C
2
将直流带来的偏移量给去除了。据此可以得到其静态工作点如
I
BQ
=
V
CC
U
BEQ
R
b
(不再受 R
b
)
I
CQ
= βI
BQ
= βI
BQ
U
CEQ
= V
CC
I
CQ
R
C
(输出回路的 KVL)
(2.4)
2.1.3 图解法
由于用于实际求解过于繁琐,图解法实用性不强,不过其可视化较强,可以直观理解各个动态量之间的关系以及两种失真。
2.1.3.1 线性函数关系建立
对于刚刚求出的静态工作点2.4, 我们可以得到
i
BE
= V
BB
+ u + i
B
R
b
i
B
=
V
BB
+u
R
b
u
BE
R
b
u
CE
= V
CC
i
C
R
c
i
C
=
V
CC
R
C
U
CE
R
c
(2.5)
将其反应在图上就是 其中斜率
1
R
b
1
R
c
都是可调的,并且也可以去通过调整 V
CC
, V
BB
去调整直线的位置,由于位置的不
当就会造成直线与非线性区域相截,造成非线性失真
26
第二章 基本放大电路 模拟电路笔记 Tsui Dik Sang
2.4: 图解法
2.1.3.2 非线性失真
根据截到的非线性区域的不同又可以将失真分成两种
2
截止失真 (顶部):截到了截止区 (2.5)
饱和失真 (底部): 截到了饱和区 (2.6)
但是注意!虽然共射接法相位仍然反相,但是 PNP 管的顶部失真是饱和失真,底部则是截止,具体可看解析书本的 2.2.5
章节
其实根据这个图我们也可以看到2.2所示的反号,即放大倍数 A
u
是负的
2.5: 截止失真
2.1.3.3 最大不失真电压
显然可以看到,静态工作点越靠近哪一边,就越容易发生哪一种失真,因此我们定义最大不失真电压
定义 2.1.2.
U
om
=
1
2
max{U
CEQ
U
CES
, V
CC
U
CEQ
} (2.6)
容易知道,当
U
CEQ
U
CES
= V
CC
U
CEQ
时取得最大值
V
CC
+U
CES
2
2
顶部底部失真的区分其实是要反过来的,截止失真对于输入信号来说是截止失真 (底部的信号无法使得晶体管导通嘛)但是对于输出信号,由于反向了,
以底部失真就变成了顶部失真,注意,这也就意味着对于共集电路就不能这样子简单分析了
27
2.2 等效电路分析法 模拟电路笔记 Tsui Dik Sang
2.6: 饱和失真
2.1.3.4 考虑负载的图解法
那么相当于输出特性图的斜率变为
1
R
c
//R
L
这条线也被叫做交流负载线,此时
U
om
=
1
2
max{U
CEQ
U
CES
, I
CQ
(R
c
//R
L
)} (2.7)
也是当且仅当相等时取得真正的最大值
3
2.2 等效电路分析法
本质上是尝试将非线性转换成线性近似
2.2.1 直流模型等效
2.7: 直流模型等效
书中直接使用分压开关等效 BE 端,用放大区代替输出端,于是就得到了这个等效模型,实际上直流模型并不常用,只是用
来分析静态 Q 点,更多的会用到动态分析
2.2.2 h 参数等效法
2.2.2.1 方程建立
我们取四个动态量的两个作为自变量,两个作为因变量,那么
u
BE
= f
1
(i
B
, u
CE
)
i
c
= f
2
(i
B
, u
CE
)
(2.8)
3
至于为什么现在还没能给出证明
28
第二章 基本放大电路 模拟电路笔记 Tsui Dik Sang
取微分
du
BE
=
u
BE
i
B
u
CE
di
B
+
u
BE
u
CE
i
B
du
CE
du
BE
=
i
C
i
B
u
CE
di
B
+
i
C
u
CE
i
B
du
CE
˙
U
BE
= h
11e
˙
I
b
+ h
12e
˙
U
CE
˙
I
C
= h
21e
˙
I
b
+ h
22e
˙
U
CE
(2.9)
根据上面的方程式,我们可以反向搭建出如下的的等效电路图,
2.2.2.2 电路搭建与简化
2.8: h 的一次等效图
然后我们就可以分析各个 h 参数的具体意义了
2.9: 参数的意义
h
11
, h
22
均是有量纲的量,在电路图以及图像上有直观的展现, 分别是电导和电阻,并表示图线的斜率2.9
u
BE
h
11
0
恒流区 h
22
0
(2.10)
对于另外两个无量纲量,只能通过曲线族去分析,这里直接给出结论
对于 h
12
(内反馈系数),结论为趋于 0
对于 h
21
,就是放大倍数 β
我们使用 h
12
以及 h
22
的结论,就可以将电路进一步化简
4
2.2.2.3 二极管内部的简化
上面给出的 h 参数实际上都是抽象的,不能直接通过实测得出,因此我们想要将 r
be
将三极管内部的实际电阻联系在一起。
4
当然,如果负载电阻 R
L
r
ce
可比,那么 r
ce
也不能忽略
29
2.3 BJT 基本放大电路 模拟电路笔记 Tsui Dik Sang
2.10: h 的二次等效图
2.11: 三极管内部简化 2.12: 一次简化
三极管内部的电阻分为结电阻和体电阻,其中体电阻 r
c
, r
e
均可忽略,而由于基区薄,所以 r
bb
不能忽略,结电 r
b
e
不能忽略。(2.12) 经过推导
5
,可以得到,
r
be
r
bb
+ (1 + β)
U
T
I
EQ
= r
bb
+ β
U
T
I
CQ
(2.11)
方程2.11表明:Q 点越高,I
EQ
, r
be
由此我们完成了电路的线性近似。
2.3 BJT 基本放大电路
2.3.1 共射动态分析
直接分析2.13的电路,可以得到动态分析的结果
˙
A
u
=
˙
U
0
˙
U
i
=
βR
c
R
b
+r
be
R
i
=
U
i
I
i
= R
b
+ r
be
R
0
= R
c
(2.12)
5
使用 PN 结方程可以得到
1
r
b
e
=
di
E
du
=
1
U
T
· I
S
· e
u
U
T
1
U
T
· i
E
然后直接套定义
r
be
=
U
be
I
b
=
U
bb
+ U
b
e
I
b
=
U
bb
I
b
+
U
b
e
I
b
= r
bb
+
I
e
r
b
e
I
b
30
第二章 基本放大电路 模拟电路笔记 Tsui Dik Sang
2.13: 共射简化
2.14:
输出端
对于有负载的直流耦合,R
c
= R
c
//R
L
, 否则,R
L
= 0,不用考虑。并且需要注意我们有时候为了方便分析会使用替换定理将输
出端变成由受控电压源组成的串联电路 (2.14)
2.3.2 温度稳定电路
2.3.2.1 目的
温度升高的时候,由输出特性曲线可以知道 I
C
首先会变大,这就造成了一系列的 Q 点偏移,为了去除这个影响,我们引入
e 端电阻 R
e
, 通过如下反馈来削弱温度对 Q 点的影响。
u
GS
T I
C
, I
E
U
E
U
BE
I
B
I
C
2.3.2.2 直流分析
实际上 e 端也应该会有电阻的,其压升会影响放大倍数,因此我们需要再交流通路中尝试将其去除,如下两个更改之后的电
2.15:
2.16:
优化阻容共射
2.17:
直流分析
在图2.16中我们加入了旁路电容 C
e
R
e
在交流分析中短路,从而减少了其对交流通路放大倍数的影响
同时,我们还将 R
b
分成了 1 2,并认为由于 I
BQ
<< I
b1
所以这两个 b 电阻满足串联分压,即
U
BQ
R
b
1
R
b
1
+ R
b
2
· V
cc
(2.13)
31
2.3 BJT 基本放大电路 模拟电路笔记 Tsui Dik Sang
于是上面的电路图经过等效之后变成2.17
V
BB
=
R
b
1
R
b
1
+R
b
2
· V
cc
R
b
= R
b
1
//R
b
2
(2.14)
书上没有讲,这里的等效过程实际上是这样的 (2.18)
+
V
CC
R
b2
R
b1
R
b2
R
b1
V
CC
R
b2
+
V
CC
R
b2
·
R
b2
R
b1
R
b2
+R
b1
R
b2
//R
b1
2.18: 替换定理等效过程
分析易得
I
EQ
=
V
BB
U
BEQ
R
b
1+β
+ R
e
(2.15)
所以当 R
e
>>
R
b
1+β
时,即 (1 + β)R
e
>> R
b
, 2.15与忽略 B 极电流的阻容近2.13相同,因此可认为这两个近似条件是等价
的,也就是说可以通过式2.15来判断2.13是否成立
2.3.2.3 交流分析
2.19: 温度稳定的线性等效电路
无需多言,容易推得,我们以后直接被公式就行
˙
A
u
=
˙
U
u
˙
U
i
=
βR
L
r
be
+(1+β)R
e
(R
L
= R
C
R
L
)
R
i
=
˙
U
i
˙
I
i
= R
b1
R
b2
[r
be
+ (1 + β)R
e
]
R
o
= R
C
(2.16)
6
刚刚我们说的是直流耦合的情况,在阻容耦合的时候只需要另 R
e
= 0 即可
2.3.3 共集放大
从原电路 (2.20) 看是取 e 极电阻的电压,不明显,但从交流通路看就很明显看到是共集了 (2.21) 容易推得其静态 Q
与动态分析
6
并且当2.13的近似条件且 β >> 1 时,
˙
A
u
R
L
R
c
(2.17)
32
第二章 基本放大电路 模拟电路笔记 Tsui Dik Sang
2.20: 共集放大电路
2.21: 交流通路
2.3.3.1 静态
I
BQ
=
V
BB
U
BEQ
R
b
+(1+β)R
e
(对输入回路的 KVL)
I
EQ
= (1 + β)I
BQ
= ···
U
CEQ
= V
CC
I
EQ
R
e
(2.18)
2.3.3.2 动态分析
2.22: h 等效电路
˙
A
u
=
(1+β)R
e
R
b
+r
be
+(1+β)R
e
R
i
= R
b
+ r
be
+ (1 + β)R
e
R
0
= R
e
R
b
+r
be
1+β
(2.19)
注意!共集的放大倍数是正的! 其电压放大倍数一般趋近于 1
7
2.3.4 共基放大电路
2.3.4.1 静态分析
I
EQ
=
V
BB
U
BEQ
R
e
I
BQ
=
I
E Q
1+β
U
CEQ
= U
CQ
U
EQ
= V
CC
I
CQ
R
c
+ U
BEQ
(注意,这是因为我们设置了 U
B
= 0, U
EQ
= U
BEQ
)
(2.20)
7
输出电阻 R
0
从表达式上可以感性理解为 R
b
+ r
be
的电流是
1
1+β
倍,因此乘一个系数,当然也可以用 Thevenin 等效,接入一个单位电压源来算这里就
不展开了 ( p
91
)
33
2.4 场效应管的放大电路 模拟电路笔记 Tsui Dik Sang
2.23: 共基放大电路
2.3.4.2 动态分析
˙
A
u
=
˙
U
o
˙
U
i
=
˙
I
e
R
e
˙
I
e
R
e
+
˙
I
b
r
be
=
βR
e
r
be
+(1+β)R
e
R
i
=
˙
U
i
˙
I
i
=
˙
U
i
˙
I
e
=
˙
I
e
R
e
+
˙
I
b
r
be
˙
I
e
= R
e
+
r
be
1+β
R
o
= R
e
(2.21)
可以看到,这也是一个放大倍数是正数的!我们可以总结一下 BJT 管三种接法的同与异:
2.1: 三种基本接法晶体管放大电路的比较
基本接法 共射电路 共集电路 共基电路
|A
u
| 小于 1(A
u
是正) (A
u
是正)
A
i
β 1 + β α =
β
1+β
1
R
i
R
o
频带
用途 一般放大 输入级、输出级 宽频带放大器
2.4 场效应管的放大电路
同理其实是有共源、共漏、共栅,但是共栅用得比较小,下面不分析。
2.4.1 基本共源电路
2.4.2 静态工作点
由于 g 极绝缘, I
g
0, U
GQ
V
GG
34
第二章 基本放大电路 模拟电路笔记 Tsui Dik Sang
2.24: 共源放大基本电路
2.25: 共漏放大基本电路
普通电路分析除非图解法无从下手,那么就使用“半导体物理”结合方程1.16
I
DQ
= i
D
= I
DO
U
GS
U
GS ( th )
1
2
U
DSQ
= V
DD
I
DQ
R
d
(2.22)
注意,算出静态工作点之后需要检测增强型 N 沟道 MOS 管的导通条件:U
GS
> 0
2.4.3 改进电路
2.4.3.1 自给偏压性电路
2.26: 使用的是结型 MOS 管的自给偏压性电路
使用的是结型 MOS 管,导通条件就是U
GS
< 0 了!当然,其实也可以使用其他两种晶体管,那这个条件就又不同了,
果有不明白的请看回“电器元件”的部分 (1.3)
2.4.3.2 分压式偏置电路
2.4.4 MOS 管的 h 参数动态分析
过程与 BJT 相似
35
2.4 场效应管的放大电路 模拟电路笔记 Tsui Dik Sang
2.27: 使用的是结型 MOS 管的自给偏压性电路
2.4.4.1 微分方程构建
i
D
=f(u
GS
, u
DS
)
di
D
=
i
D
u
GS
U
DS
du
GS
+
i
D
u
DS
U
GS
du
DS
˙
I
d
=g
m
˙
U
gs
+
1
r
ds
˙
U
ds
(2.23)
2.4.4.2 等效电路图绘制
2.23可以画出电路图2.28
2.28: MOS 管的 h 参数等效线性交流电路
2.4.4.3 参数分析
抓住量纲!
r
ds
可以直接从输出图像 (1.22或者1.29) 斜率中看出,
8
8
注意,r
ds
2.24中的 R
d
不是一回事!在我纸质版的第一次犯了这个错误,以为在不同电路中 r
ds
会变,其实这个 r
ds
源于管子内部,R
d
则是在分析完
管子的等效电路之后再并联上去的,其本质上是管子外部的。
36
第二章 基本放大电路 模拟电路笔记 Tsui Dik Sang
g
m
=
i
D
u
GS
U
DS
=
2I
DQ
U
GS(th)
u
GS
U
GS(th)
1
U
DS
=
2
U
GS(th)
p
I
DQ
i
D
(2.24)
g
m
2
U
GS(th)
p
I
DQ
I
DQ
(2.25)
2.29: 共源分析
2.30: 共漏分析
2.4.5 动态分析
2.4.5.1 共源
画出2.24交流通路2.29
˙
A
u
=
˙
U
o
˙
U
i
=
˙
I
d
R
d
˙
U
gs
=
g
m
˙
U
gs
R
d
˙
U
gs
= g
m
R
d
R
i
=
R
o
= R
d
(2.26)
2.4.5.2 共漏
画出2.25交流通路2.30
˙
A
u
=
˙
U
o
˙
U
i
=
˙
I
d
R
s
˙
U
gs
+
˙
I
d
R
s
=
g
m
˙
U
gs
R
s
˙
U
gs
+g
m
˙
U
gs
R
s
=
g
m
R
s
1+g
m
R
s
if R
i
=
R
o
= R
s
1
g
m
(2.27)
其中 R
o
需要使用 Thevin 等效法 (引入单位电压源算电流) 来推,除此之外笔者还没有想到什么很好的理解方法。
2.5 基本派生电路
在多级放大电路中会定量分析,这里需要学会定性分析,也就是什么样的复合管是可以工作的,什么是无法工作的。这里总
结出两个规律
场效应管均不能放在二极以后 (因为其是电压激发型的,前级的电流根本无法使其导通)
两管相接的电流流向必须要对应,不能出矛盾
37
2.5 基本派生电路 模拟电路笔记 Tsui Dik Sang
38
第三章 集成运放电路
一切都始于一个对多级放大电路的优化问题……
3.1 多级放大电路
3.1.1 常规电路
3.1.1.1 直接耦合
3.1: 存在问题分析
改进 存在问题
简单 NPN 叠加 后极 b 端低电位抑制了前级 e
增加后级 e 极电阻,以此来抬高后极 b 极电压 对动态信号影响较大
R_e 为二极管或者稳压管,从而减少其动态电阻 (新的问题) Vcc 端电压单调增,而 Vcc 有界,势必会限制级数
NPN PNP 混用,交替连接 存在零点漂移现象
3.1: 多级直流耦合最终形态
这是直流耦合固有的弊端,通过改进电路永远无法消除,于是我们就需要用到阻容耦合电路了
3.1.1.2 阻容耦合
与直流耦合相比 C
2
, C
4
两个电容,起到了“隔直通交”的作用
优点:彻底解决了直流耦合中 Q 点影响以及零点漂移的问题
39
3.2 抽象定义 模拟电路笔记 Tsui Dik Sang
3.2: 多级阻容耦合
优点:只对理想高频信号又上述的优点,对于缓慢低频会产生严重的失真!
3.1.1.3 变压耦合
优点:同阻容耦合,同时还可以通过调整匝数比使得低电阻用电器也能夺得较大的电压
优点:同阻容耦合,并且更笨重
3.1.1.4 光电耦合
可以避免光电干扰……
3.3: 光电耦合
3.4: 变压耦合
3.2 抽象定义
这一部分是对集成运放电路一个普遍性的认识
40
第三章 集成运放电路 模拟电路笔记 Tsui Dik Sang
动态分析
˙
A
u
=
Q
N
j=1
˙
A
uj
R
i
= R
iLast
R
0
= R
oNext
(3.1)
具体的运算需要考验基本放大电路的知识了 (还有一部分抽象定义等我们过完差分电路再做)
3.3 差分放大电路
其产生的思想源于消除温漂的尝试:我先要引入一个随温度变化的恒压源那么我们为什么不能镜像构造一个完全相同的电
路呢?【共模信号】,使得在在理想状态下期输出必为零,【强烈抑制】
然后将我们想要的信号分成大小相等的两部分,按相反的极性加在电路两个输出端【差模信号】,即
u
c
1
u
c
2
= 2∆u
C
i
(3.2)
但是 R
e
1 R
e
2 的分立存在使得放大倍数变低 [温度稳定电路固有弊病]
合二为一,从而让两边的 i
e
抵消,R
e
在动态分析中“消失”
为了方便直流分析,更改直流地的位置,使得 E 端接入的是负直流,最终我们就得到了长尾式差分放大电路
3.5: 长尾式差分放大电路
3.3.1 静态工作点分析
I
EQ
=
V
E E
U
BEQ
2R
e
在忽略了 R
b
之后
I
BQ
=
I
E Q
1+β
= . . . e 端反解
U
CEQ
= V
CC
I
CQ
R
c
+ U
BEQ
(3.3)
所以在静态的时候输出 u
0
= U
CQ1
U
CQ2
0
41
3.3 差分放大电路 模拟电路笔记 Tsui Dik Sang
3.3.2 经典动态分析
1
3.3.2.1 共模信号 (u
c
=
u
1
+u
2
2
)
经过对称性和温度稳定的负反馈,u
oc
都会变得极小,同时如果 R
e
越大,反馈作用也越大,但是 R
e
有不能太大,具体原
因我们后面会分析
A
c
=
u
oc
u
Ic
0 (3.4)
3.3.2.2 差模信号 (u
d
= u
1
u
2
)
这里我们要引入一个和前面动态分析不一样的体系,但其实这才是真正的动态分析!我们定义,在交流分析中的地是电压不
随时间变化的位置
:
输入的差模信号的中点就可以作为一个地,那么输入的
u
信号就变成了两个异号的
u
2
作用在了输入的两端
前面讲到的在动态分析中短路的 R
e
,现在我们可以说得更清楚一点:他整个都是一个交流信号里的“地”
如果 R
L
是线性的,那么其中点也可以作为一个地,也就是直接将 R
L
分在了地的正端和负端。
由此我们就可以画出双入双出的动态分析:那么动态分析就很容易列出来了
3.6: 双入双出差模分析
A
d
=
u
od
u
Id
=
β
R
c
R
l
2
R
b
+r
be
R
i
= 2(R
b
+ r
be
)
R
o
= 2R
c
(3.5)
为了综合考量电路
对共模信号的抑制作用
对差模信号的放大作用
引入了共模抑制比
K
CM R
=
A
d
A
c
(3.6)
理想状态下
1
即指的是双入双出的经典情况,即图3.5
42
第三章 集成运放电路 模拟电路笔记 Tsui Dik Sang
3.3.3 双入单出直流 & 交流
3.3.3.1 直流分析
3.7: 双入单出直流
3.8: 双入双出等效后
使用复杂的 T hevin 等效或者反复用替换定理,可以将图3.7变为3.8 然后就可以进行直流分析:
V
CC
=
R
L
R
c
+R
L
· V
CC
R
c
= R
c
R
L
U
CQ1
= V
CC
I
CQ
R
c
U
CQ2
= V
CC
I
CQ
R
c
(3.7)
3.3.3.2 差模分析
3.9: 双入单出动态
43
3.3 差分放大电路 模拟电路笔记 Tsui Dik Sang
在动态分析中 R
L
的地就偏向一边了,画出 h 参数等效电路图仍然可以求:
A
d
=
1
2
β(R
c
R
l
)
R
b
+r
be
R
i
= 2(R
b
+ r
be
)
R
o
= R
c
变为原来一半
(3.8)
注意,由于我们可以自由选取在哪一边输出,所以如果我们选负端作为输出,那么放大倍数 A
u
就是正的
3.3.3.3 共模分析
单出破坏了输出的对称性,因此就算是在理想对称的情况下共模放大也不为零 们可以画出其等效的实际电路以及其等效
3.10: 双入单出共模
的交流电路 (只画了有输出的一边) 那么也可以分析出其动态参数
A
c
=
β(R
C
R
L
)
R
b
+r
be
+2(1+β)R
e
R
i
= R
b
+ r
be
+ 2(1 + β)R
e
R
o
= R
c
(3.9)
3.3.3.4 双入单出总结
综上我们可以得到
K
CM R
=
R
b
+ r
be
+ 2(1 + β)R
e
2(R
b
+ r
be
)
(3.10)
同样可以看到,R
e
↑⇒ K
CM R
3.3.4 单入双出
3.11: 单入双出
44
第三章 集成运放电路 模拟电路笔记 Tsui Dik Sang
原电路可以等效成双入双出:
左:u
1
, 右:0
左:两个顺串的
u
1
2
右:两个反串的
u
1
2
一对 u
1
的差模
一对 u
1
的共模
(3.11)
那么输出的电压就是
2
u
o
= A
d
u
1
+ A
c
u
1
2
(3.12)
3.3.5 单入单出
只能说用前面三种电路分析的方法可以类比出来,此处 (包括书上) 也都从略了
3.3.6 四种输入输出电路归纳
输入电阻均为 2(R
b
+ r
be
)
A
d
A
c
R
o
与输出方式有关,
双端输出时,A
d
见式3.5,A
c
= 0R
o
= 2R
c
单端输出时,A
d
A
c
分别见式 3.83.9,而 R
o
= R
c
;
单端输入时,在差模信号输入的同时总伴随着共模输入。若输入信号为 u
1
,则 u
1d
= u
1
u
1c
= +∆u
1
/2,输出电
压表达式为式3.12
3.4 改进型差分电路
3.4.1 初步改进
3.4.1.1 电流源的引入
一句说明更改目的:我要获得有更大 K
CM R
的电路!
观察其表达式,若 R
e
,那么由式3.10得单端输出的 K
CM R
也为
但是 R
e
变大的同时,为了稳定住静态工作点 (保持 I
e
不变),那么势必 V
EE
也会跟着线性增大至无穷。
因此我们希望能找到一个“动态电阻无穷大,但是仍能通过静态电阻的东西”:独立电流源!
于是我们使用了一个 b 极独立的分压式 BJT 电路来模拟这个电流源,只要 I
B
不变,则 I
c
也不变,并且
I
C3
= I
E3
=
U
R2
U
BEQ
R
3
(3.13)
至此,想要共模抑制比无穷大的愿望理论上就实现了。
3.4.1.2 调零电路
e 极引入一个课调电阻,通过滑动其在两边电路的比值,使得在输入差模为零的时候输出也为零
3.4.1.3 场效应管差分电路
为了获得高阻的差分电路
自行再做一下例 3.3.1, 很综合的一道题
2
为什么共模要除 2,共模不用,重新再去看看其定义就知 (3.3.2.2)
45
3.4 改进型差分电路 模拟电路笔记 Tsui Dik Sang
3.12: 调零电路
3.13: 场效应管高阻差分
3.4.2 电流源电路
3.4.2.1 镜像电流源
前提假设是 I
R
>> I
B
,这个图中也存在温度稳定的反馈,请自己分析!
3.14:
镜像电流源
可以得到
I
R
=
V
CC
U
BE
R
= I
C
+ 2I
B
= I
C
+ 2 ·
I
C
β
(图中的红线的 KVL)
I
C
=
β
β+2
· I
R
I
C
I
R
=
V
CC
U
BE
R
(3.14)
缺点是:I
C
太大!,于是就有了下面的两个电流源
46
第三章 集成运放电路 模拟电路笔记 Tsui Dik Sang
3.15: 比例电流源
3.4.2.2 比例电流源
直接给结论,有兴趣看推导
3
I
C1
R
e0
R
e1
· I
R
(3.21)
可见,只要改变 R
e0
R
e1
的阻值,就可以改变 I
C1
I
R
的比例关系。
3.4.2.3 微电流源
其想法源头是:如果将比例电流源中的 R
e0
0 不是更好?那么此时的对数项就无法忽略了,最终得到
I
C1
=
U
T
R
e1
ln
I
R
I
C1
(3.22)
其中 I
R
=
V
CC
U
BEQ
R
, 这是一个超越式 (所以也就意味着考试基本不可能考)
47
3.4 改进型差分电路 模拟电路笔记 Tsui Dik Sang
3.16: 多路电流源
3.17: 多路电流源横向
3.4.2.4 多路电流源电路
即是对原电路输出电流源端的反复克隆
I
E0
R
e0
I
E1
R
e1
I
E2
R
e2
I
E3
R
e3
(3.23)
更一般的,如果设计成横向 PNP
4
那么电流大小与横截面积有关
3.4.2.5 以电流源为有源负载的放大电路
根据第三章经典的共射 or 共源分析,R
c
, |
˙
A
u
| , R
c
必然会导致 V
CC
我们同样想要用构造的电流源来代替 R
c
, 使得其动态电阻 这个电路 (3.18) 还有一个巧妙之处就是直接使用了共射的
3
根据电路中 (3.15) 的红线列 KVL
U
BE0
+ I
E0
R
e0
= U
BE1
+ I
E1
R
e1
(3.15)
根据晶体管发射结电压与发射极电流的近似关系可得:
U
BE
U
T
ln
I
E
I
S
(3.16)
由于 T
0
T
1
的特性完全相同,所以:
U
BE0
U
BE1
U
T
ln
I
E0
I
E1
(3.17)
代入式3.15,整理可得:
I
E1
R
e1
I
E0
R
e0
+ U
T
ln
I
E0
I
E1
(3.18)
β 2 时,I
C0
I
E0
I
R
I
C1
I
E1
,所以:
I
C1
R
e0
R
e1
· I
R
+
U
T
R
e1
ln
I
R
I
C1
(3.19)
在一定的取值范围内,若式3.19中的对数项可忽略,则:
I
C1
R
e0
R
e1
· I
R
(3.20)
4
在制作工艺上需要用到横向 PNP 管,但是分析不变
48
第三章 集成运放电路 模拟电路笔记 Tsui Dik Sang
3.18: 有源负载
3.19: 有源负载交流
直流,没有引入其他的电源。但是注意,这里的输入 u
1
需要自带偏置电流源
静态分析
I
R
=
V
CC
U
BEQ3
R
I
CQ1
= I
c2
=
β
β+2
I
R
(由镜像电流源公式得)
(3.24)
动态分析
5 6
˙
A
u
=
β
1
(r
ce1
r
ce2
R
L
)
R
b
+ r
be1
β
1
R
L
R
b
+ r
be1
(3.25)
当然,有源负载也可以应用到差分电路上面
7
3.20: 有源差分电路 FET
静态分析
I
s1
= I
s2
=
I
2
I
D1
= I
D2
=
I
2
I
D4
= I
D3
I
D1
(镜像电流源得到)
i
O
= I
D4
I
D2
0 (3.26)
差模分析
i
D1
= i
D2
(差模信号得到)
i
D
3
= i
D
1
(∆i
g
0)
i
D4
= i
D3
= i
D1
(镜像电流源得到)
i
o
= i
D4
i
D2
= 2i
D1
(3.27)
可以看到这时的输出是普通单端输出的两倍
放大倍数分析
A
iu
=
i
0
u
1
=
2∆i
D1
2
= g
m
A
u
=
u
0
u
1
=
i
0
u
1
·
(
r
ds1
r
ds4
R
L
) =
g
m
(
r
ds1
r
ds4
R
L
)
g
m
R
L
(3.28)
注意,分析放大倍数的时候只看 T4T2T1T3 仅看做有源负载
5
关于 r
ce1
与受控电流源并联的解释请看 p77 78 h
22
的分析
6
并且这里 T3 与电路可以看作隔离 (共射分析可得)
7
由于课本上的例子是场效应管,所以下面的分析也是针对场效应管,老师的课件上好像有 BJT 管情况的有源差分电路
49
3.4 改进型差分电路 模拟电路笔记 Tsui Dik Sang
3.4.3 (直接耦合互补) 输出级
刚刚我们改进的相当于是一些元器件,下面我们试试优化一下输出级
3.4.3.1 提高最大不失真电压
为了实现这个目的,我们使用了开关电路,通过这种电路
3.21: 开关电路
3.22: 交越失真
U
om
=
V
CC
|U
CES
2
(3.29)
已经是之前输出不失真电压的两倍了
但是这个电路还有另外的问题:交越失真
3.4.3.2 消除交越失真:微导通电路
3.23: 消除交越失真二极管电路
3.24: 复合互补输出级
1. 二极管:
U
B1B2
= U
D1
+ U
D2
(3.30)
合理改变 R
1
, R
2
改变这个区间范围就可以使得上下两个管都处于微导通的状态
2. 复合管设计:
U
B1B2
= U
CE
R
3
+ R
4
R
4
U
BE
(3.31)
也可以进行区间调整
50
第三章 集成运放电路 模拟电路笔记 Tsui Dik Sang
当然,BJT 管能干的事情 MOS 管也可以!用 CMOS 管也可以制作输出级
3.5 具体的集成运放电路
3.5.1 电路分析
有了前面几个部分的储备,我们就可以构造实际使用的集成运放电路了。注意,这里我们将前面说所的构造电流源所用到的
镜像电路叫做偏置电路。我们现在以下面这个复杂的电路分析一下
3.25: 双极型集成运放
3.26: 双极型集成运放交流分析
在我们分析电路时第一步就是将这些偏置电路找出并还原成电流源的形式,从而简化电路。
分析
输入级:差分电路消共模
输出级:多级复合放大 (第三章的知识推广)
输出级:刚刚提到的复合互补输出级
画出交流图3.26
8
– T6&T7 T8&T9 u
I
的一个极性中只有一对能够导通,所以图中我们只分析了 T6&T7 这一对
注意,由于复合互补输出级只是用于调整静态特性 (制造微导通)所以在交流通路中近似为短路无需画出!(只能先这
样子理解了)
电流源 I
1
对交流无效:差模信号在射极互补抵消 (注意!这个电路用的是PNP ),所以这个电流源在交流中就不是
无穷大电阻了,而是短路!
对动态回路交流分析,有 (β + 1 β)
i
b4
i
c3
= βi
b3
= β
2
i
b1
i
b6
i
c4
= βi
b4
= β
3
i
b1
i
b7
i
c6
= βi
b6
= β
4
i
b1
(3.32)
˙
A
u
=
u
0
∆(u
11
u
12
)
=
i
L
R
L
i
b1
· 2r
bel
β
5
R
L
2r
bel
(3.33)
R
i
= r
bel
+ r
be2
= 2r
bel
(3.34)
8
如果觉得抽象可以看看图中画出的几条走线
51
3.5 具体的集成运放电路 模拟电路笔记 Tsui Dik Sang
3.5.2 关于极性的判断
3.5.2.1 理论判断法
共射变号,共集共基不变号
3.5.2.2 粗暴法
共基不变,其他两种:沿着有箭头的不变,沿着没有箭头的变 (其实理论依据是一样的)
3.5.3 F007 电路
3.27: F007
3.28: F007 初步分析
3.5.3.1 输入级
共集 + 共基:其中共基的 T7 是使用对称性来进一步抑制共模信号、增强差模信号的, 具体的分析步骤与3.27类似,请尝试
推一推,也可看书本 P158 的分析
同时还存在一个负反馈:
I
9
I
C10
基本不变
I
B3
, I
B4
↓⇒ I
C1
, I
C2
, I
C3
, I
C4
(3.35)
这就抵消了由于 I
9
造成的 I
C1
, I
C2
, I
C3
, I
C4
3.5.3.2 中间级
与前面的电路类似
3.5.3.3 输出级
与前面形式类似,但是这里又引入了一个新的保护电路的方法:
首先在并联的两条通路 (3.28的蓝线) 中有
u
R
7
+ u
D1
= u
BE14
+ i
o
R
9
(3.36)
i
o
(过大)D
1
导通,从而可以分流 i
o
(D2 同理)
(由于单极性集成运放和混合结构课上没有讲,此处先从略)
52
第三章 集成运放电路 模拟电路笔记 Tsui Dik Sang
3.6 集成运放电路的抽象分析
3.6.1 基本组成
输入级 中间级 输出级
偏置电路
u
P
u
N
u
O
在分析 F007 的时候我们已经得到了集成运放电路最基本的四个组成部分了:输入级,中间级,输出级,偏置级
3.6.2 主要性能指标
3.6.2.1 开环差模增益:
A
od
=
u
0
∆(u
P
u
N
)
(3.37)
画图记录常用 20 lg |A
od
|, 单位 dB
3.6.2.2 共模抑制比
K
CM R
=
A
od
A
oc
(3.38)
, 也是用 20 lg K
CM R
3.6.2.3 失调电压 U
IO
以及温漂
dU
IO
dT
:
U
IO
共模输出电压折合到输入端的电压
U
IO
=
U
o
u
I
=0
A
od
(3.39)
反应的是抗干扰能力
3.6.2.4 失调电压 I
IO
以及温漂
dI
IO
dT
:
I
IO
= |I
B1
I
B2
| (3.40)
反应的是输入级的不对称程度
3.6.2.5 输入偏置电流 (静态)
I
B1
=
1
2
(I
B1
+ I
B2
) (3.41)
3.6.2.6 最大共模输入电压 U
Icmax
超了差模放大效果就不好了
53
3.6 集成运放电路的抽象分析 模拟电路笔记 Tsui Dik Sang
3.6.2.7 最大差模输入电压 U
Idmax
超过了话管子就会被击穿!
3.6.2.8 -3dB 带宽 f
H
即变为原的
1
2
3.6.2.9 单位增益带宽 f
c
字面意思,A
od
下降到 0 分贝 (A
od
= 1)
3.6.2.10 转换速率 SR
高速型这个指标很好
SR =
du
o
dt
m
ax (3.42)
3.6.3 函数化的抽象
3.29: 集成运放的抽象分析
如果我们不考虑细节,只在乎功能,那么整个放大电路就可以抽象成表达式
u
o
= f (u
P
u
N
) A
od
(u
P
u
N
) 在线性区 (3.43)
可以看到线性区实际上是很窄的,我们在后面学反馈电路的时候还会大量的接触到这个三角形符号,到时候会更具体的对其运用
性质做分析
3.6.4 种类及选择
考点应该只有按性能指标分类
3.6.4.1 高阻型
多用于测量电路,当然,其制作工艺基本上也是用到了场效应管了
3.6.4.2 高速型
SR 大!,用于数模、模数转换器
3.6.4.3 高精度
低失调,低温漂,低噪音,高增益
54
第三章 集成运放电路 模拟电路笔记 Tsui Dik Sang
3.6.4.4 低功耗
静态功耗低,适用于空间技术、军事科学
3.6.4.5 通用型
(想不到就选这个)
3.6.5 集成运放的保护措施 (抽象分析)
好像不是重点,有时间再做
55
3.6 集成运放电路的抽象分析 模拟电路笔记 Tsui Dik Sang
56
第四章 放大电路的频率响应
一句话就是频率太高太低都不好
太高:电流过不去
太低:前端的杂散电容就将后面的电路短路了
4.1 电路理论知识恶补
首先我们必须引入一些电路关于电容频率响应的知识:
4.1.1 阻抗的定义
其实是简单粗暴的,因为引入复数后求导方便,所以定义
U
=
U
m
cos
(
ωt
+
φ
) =
˙
U
=
U
m
e
j(ωt+φ)
(4.1)
普通电阻由于 U I 都成线性关系,一除之后还是实的,但是对于电容电感就不一样了,对于电容
I = C
dU
dt
= C
d
˙
U
dt
= jωC (4.2)
所以阻抗
˙
R
C
= jωC (4.3)
4.1.2 Miller 定理
一张图说明一切4.1,其中
K =
U
2
U
1
(4.4)
4.1: miller
4.2 研究方法引入
一个很重要的思想就是复数!
57
4.2 研究方法引入 模拟电路笔记 Tsui Dik Sang
4.2.1 简单频率响应地电路
4.2.1.1 高通电路
4.2: 高通电路
˙
A
u
=
˙
U
o
˙
U
i
= ··· =
1
1 +
1
jωC
(4.5)
ω
L
=
1
RC
=
1
τ
f
L
=
ω
L
2π
=
1
2πRC
f =
ω
2π
˙
A
u
= ··· =
j
f
f
L
1 + j
f
f
L
(4.6)
然后纯纯利用复变知识得到
|
˙
A
u
| = ··· =
f
f
L
1+(
f
f
L
)
2
φ = 90° arctan
f
f
L
= arctan
f
L
f
(4.7)
˙
A
u
的模和辐角都与频率有关,因此这就是
˙
A
u
的幅频特性和相频特性
1
4.2.1.2 低通电路
完全类似的方法我们可以得到低通电路的表示式
2
˙
A
u
=
˙
U
o
˙
U
i
=
1
1 + jωC
=
1
1 + j
f
f
L
|
˙
A
u
| =
1
1+(
f
f
L
)
2
φ = arctan
f
f
L
(4.8)
4.2.1.3 三个特殊的点
我们将幅频特性和相频特性绘制出来,有三个点值得我们注意
3
f >> f
L
:|
˙
A
u
| 1, φ 0°
f = f
L
:|
˙
A
u
| =
1
2
0.707, φ45°
1
为什么我们要使用复数来表示放大率,除了本身推导的结果,求导方便,化乘法为加法三个运算上的优点之外还有一个物理上的意义:放大得到的电压不仅
仅是幅值变了,相位相对于原来的信号也发生了延迟和超前。这在仅仅用实数表示的放大率是无法体现这个特点的。用复数表示阻抗也是同理,其表征的是电流
相位相对于电压相位的相移
2
注意,f
H
的表达式与 f
L
完全一样,但是研究的电路不同了,所以将这两者在这里作比较没有意义
3
这里就只分析高通电路,低通电路同理
58
第四章 放大电路的频率响应 模拟电路笔记 Tsui Dik Sang
4.3: 低通电路
f << f
L
:|
˙
A
u
|
f
f
L
<< 1,
4
φ 90°
对于低通,类似,区别在于在 f >> f
H
时候 |
˙
A
u
| f 呈的就是一种负相关的关系了
4.2.1.4 总体分析
在实际的电路远比这个复杂,不仅仅在低频表现出高通性质,在高频也会表现出低通性质,在同一个这样子的复杂电路中,
f
H
f
L
的表达式肯定是不同的了,但是通过图像仍然可以找到, |
˙
A
u
| =
1
2
的地方,分别称为上限频率、下限频率,并且
定义通频带
f
bw
= f
H
f
L
f
H
(4.9)
4.2.2 波特图
其实就只是引入了对数坐标,对放大率做了对数处理,
20
lg
˙
A
u
=
20 lg
f
f
L
20 lg
r
1 +
f
f
L
2
, (高通)
20 lg
r
1 +
f
f
L
2
, (低通)
(4.10)
然后有时候为了简化还会对图线折线化得到“简化的波特图”然后所谓的 20dB/十倍频以及-3dB 带宽就都可以从图中很清
晰的看出了。其中在几个点的误差最好是需要记住的 (以高通电路为例)
f = 0.1f
H
φ = 90 arctan 0.1 5. 71°;幅频没有误差
f = f
H
:相频没有误差,幅频有-3dB 的误差
f = 0.1f
H
φ = 90 arctan 0.1 5. 71°;幅频没有误差
4.3 晶体管的高频等效模型 (混合 π 模型)
4.3.1 建立模型
4.3.1.1 初步模型
这实际上是 h 参数模型更加精准的版本,考虑了 C
µ
, C
π
两个并联电容 半导体物理得,虽然电流放大系 β 考虑频率响
应时变成了 f 的函数,但是
˙
I
C
˙
U
b
e
的关系仍为线性,比例系数不变,记为
˙
I
C
= g
m
˙
U
b
e
(4.11)
4
这也以为着此时 |
˙
A
u
| f 近似成一种线性关系
59
4.3 晶体管的高频等效模型 (混合 π 模型)模拟电路笔记 Tsui Dik Sang
4.4: 波特图
4.5: 混合 π 模型
4.3.1.2 一次近似 (利用大电阻断路)
根据近似条件
r
ce
>> R
L
, 断!
r
b
e
>> |jωC
µ
|, 断!
(4.12)
得到4.6
4.6: pi 模型近似 1
4.3.1.3 二次近似 (利用 M iller 定理)
根据4.1.2,可以将 C
µ
拆成
C
µ
= (1
˙
K)C
µ
(1 + |
˙
K|)C
µ
C
′′
µ
=
˙
K1
˙
K
· C
µ
(4.13)
60
第四章 放大电路的频率响应 模拟电路笔记 Tsui Dik Sang
5
C
π
= C
π
+ C
µ
C
π
+ (1 + |
˙
K|)C
µ
(4.14)
并且 C
′′
µ
容抗远大于 R
L
,因此:断!
最终得到了
4.7: pi 模型近似 2
4.3.2 参数研究
4.3.2.1 r
b
e
形式与2.11相同,且 r
bb
可以查表得
r
b
e
(1 + β
0
)
U
T
I
EQ
(4.15)
于是低频的不变量可以用了,根据 (这里还有不懂的地方)
˙
I
c
= g
m
˙
U
b
e
= β
0
˙
I
b
˙
U
b
e
=
˙
I
b
r
b
e
g
m
=
β
0
r
b
e
I
EQ
U
T
(4.16)
4.3.2.2 C
µ
, f
T
均可以查表得其中
C
µ
= C
ob
(4.17)
4.3.2.3 β(放大倍数的频率响应)
定义 4.3.1.
˙
β =
˙
I
c
˙
I
b
U
CE
(4.18)
为了方便后面的推导,取
˙
K = 0 那么
C
π
= · = C
π
+ C
µ
(4.19)
结合刚刚的4.16, 一波推导
6
˙
β = ··· =
β
0
1+jωr
b
e
C
µ
f
β
=
1
2πr
b
e
C
π
˙
β =
β
0
1 + j
f
f
β
(4.20)
类似于低通电路,其辐角和幅值请回顾低通电路,此处从略同理可推出共基时的频率响应
˙α =
α
0
1 + j
f
f
α
(f
α
= (1 + β
0
)f
β
) f
T
(4.21)
5
共射接法导致
˙
K 是负的
6
其实我还并不是很理解4.16, 所以这里迅速过掉,以后如果理解了再回来做
61
4.4 单管放大的频率响应 模拟电路笔记 Tsui Dik Sang
4.4 单管放大的频率响应
4.8: 单管电路
4.9: 高频 4.10: 中频 4.11: 低频
除了难点,否则推导一律从略
4.4.1 中频
与经典的放大分析类似—耦合电容断,极间电容断!但是由于 β 不在恒定,因此这里实际上是用 g
m
来进行推导的。
˙
A
usm
=
R
i
R
i
+ R
s
·
r
b
e
r
be
· (g
m
(R
c
R
L
)) (4.22)
4.4.2 低频
此时耦合电容不再是短路,而变成了一个阻抗。
˙
A
usl
=
R
i
R
i
+ R
s
·
r
b
e
r
be
· (g
m
(R
c
R
L
)) ·
R
L
R
c
+
1
jωC
+ R
L
(4.23)
7
进一步可以化简为
˙
A
usl
=
˙
A
usm
·
j
f
f
L
1 + j
f
f
L
=
˙
A
usm
·
1
1 + j
f
L
f
(4.24)
8
7
这里推导需要说明一下:
˙
U
o
= I
R
L
R
L
=
(R
L
+
1
jωC
) R
C
(R
L
+
1
jωC
)
·
˙
I
C
· R
C
=
R
C
(R
L
+
1
jωC
) + R
C
· (g
m
U
b
e
)R
L
然后再处一个 U
b
e
,稍微化简一下就得到了4.23
8
其中
f
L
=
1
2π(R
c
+ R
L
)C
(4.25)
62
第四章 放大电路的频率响应 模拟电路笔记 Tsui Dik Sang
从而可以得到幅频特性:
20 lg |
˙
A
usl
| = 20 lg |
˙
A
usm
| + 20 lg
f
f
L
1+
f
f
L
2
φ = 180
+
90
arctan
f
f
L

= 90
arctan
f
f
L
(4.27)
4.4.3 高频
耦合电容短路,几件电容变成阻抗,需要用反复用替换定理“吃”掉输入回路的电阻,使其变成一个简单低通电路 (4.9
b)
˙
A
ush
=
R
i
R
s
+ R
i
·
r
b
e
r
be
·
1
jωRC
π
1 +
1
jωRC
π
· (g
m
R
L
) (4.28)
20 lg |
˙
A
ush
| = 20 lg |
˙
A
usm
| 20 lg
r
1 +
f
f
H
2
φ = 180° arctan
f
f
H
(4.29)
4.4.4 波特图
最后我们可以将三者简单粗暴整合起来
˙
A
us
=
˙
A
usm
·
j
f
f
L
1 + j
f
f
L
1 + j
f
f
H
=
˙
A
usm
·
1
1 + j
f
L
f
1 + j
f
f
H
(4.30)
就可以画出波特图了在,和在之后的解题中非常有用。
可以去看看书本 p199 的例 4.4.1
求静态工作点
求参数 (r
b
e
, g
m
,
˙
K, C
π
)
求中频
˙
A
usm
(使用的是之前的经典放大分析)
f
H
, f
L
(由时间常数那一个表达式来求)
就可以得到4.30的式子了。
然后就可以得到波特图之类的东西了
4.4.5 增益带宽积 (改善频率响应)
4.4.5.1 对于低频
可以考虑直接耦合 (当然会出现温漂作为代价)
4.4.5.2 对于高频
4.26, 需要使得 C
π
(C
gs
) , 但是又由
C
π
= C
π
+ (1 + |
˙
K|)C
µ
C
π
+ (1 + g
m
R
L
)C
µ
˙
A
usm
=
R
i
R
i
+R
s
·
r
b
e
r
be
· (g
m
(R
c
R
L
))
(4.31)
减小 g
m
RL
必然会使得增益也跟着减小,两者不可得兼,于是定义一个评价这个性能的指标增益积
f
H
=
1
2πRC
π
(4.26)
63
4.5 多级放大电路的频率响应 模拟电路笔记 Tsui Dik Sang
4.12: 单管波特图
定义 4.4.1.
|
˙
A
usm
f
bw
| |
˙
A
usm
f
H
| =
R
i
R
i
+ R
s
·
r
b
e
r
be
· g
m
R
L
·
1
2π[r
b
e
(r
bb
+ R
s
R
b
)]C
π
(4.32)
然后使用近似条件
R
b
>> r
be
R
i
r
be
R
b
>> R
s
R
b
R
s
R
s
(1 + g
m
R
L
)C
µ
>> C
π
, g
m
R
L
>> 1 C
π
g
m
R
L
C
µ
(4.33)
得到
|
˙
A
usm
f
bw
|
1
2π(r
bb
+ R
s
)C
µ
(4.34)
同理也可推场效应管的增益积
|
˙
A
usm
f
bw
|
g
s
1
2πR
g
C
gd
(4.35)
4.5 多级放大电路的频率响应
放大率是做乘法:
˙
A
u
=
N
Y
k=1
˙
A
uk
(4.36)
然后根据复变的知识
9
, 得到
20 lg |
˙
A
u
| =
P
N
k=1
20 lg |
˙
A
uk
|
φ =
P
N
k=1
φ
k
(4.37)
在波特图上是也是完全的叠加。具体可以看看作业题 4.6(HW5), 有一个很经典的图像叠加分析
对于频带的分析目前除了书上给的修正系数的理论,也找不到其他更严谨的方法
f
L
1.1
v
u
u
t
N
X
k=1
f
2
Lk
1
f
H
1.1
v
u
u
t
N
X
k=1
1
f
2
Lk
(4.38)
9
相乘则模相乘 (但是取对数之后就又是相加),辐角相加
64
第四章 放大电路的频率响应 模拟电路笔记 Tsui Dik Sang
对于二、三级的话如何各级频率响应特性相同,可以直接背结论:
2 :
f
H
0.643f
eH
f
L
1.56f
eL
3 :
f
H
0.52f
eH
f
L
1.91f
eL
(4.39)
多级的
˙
A
u
表达式需要看情况而定,有以下的特点
可以通过“共射”这些字样判断正负,因为共射反向,但是假如是二极共射就负负得正了
分母中的 (1 +
f
L
jf
) 因子或者分子中的 j
f
f
L
与分母的 (1 + j
f
f
L
) 因子共同出现就应该有低频下限频率,具体有多少级需要看
因子的次数
相应的分母的 (1 + j
f
f
L
) 因子单独出现就可能是高频上限频率,但是具体是高还是低还是要看清楚题目是否有已知条件
中频放大率就是将式子的因子部分提出干净后剩下的,也可能包括负号
其他请看习题!
65
4.5 多级放大电路的频率响应 模拟电路笔记 Tsui Dik Sang
66
第五章 反馈
基本放大电路
反馈网络
+
净输入量输入量 输出量
5.1 反馈的判断
5.1.1 判断有无
就是看有无通路
5.1.2 正负反馈
5.1.2.1 分立元件
需要先学会怎么样判断极性。那请参见3.5.2.
5.1.3 三角形
看同相输入端 or 反相 (5.1)
5.1.4 直流 or 交流
一般直流耦合的话都有或都无,而有电容的话需要谨慎判断
67
5.2 四种组态 模拟电路笔记 Tsui Dik Sang
+
+
5.1: 三角形电路
5.2 四种组态
5.2: 电压串联
5.3: 电流串联
5.4: 电压并联
5.5: 电流并联
5.2.0.1 电压串联负反馈
反馈量为电压,产生反馈的是输出电压的分压
u
F
=
R
1
R
1
+ R
2
u
o
(5.1)
可以理解为全部电压都反馈回去 (在图中5.25.4的比较可以清晰的看到)
5.2.0.2 电流串联负反馈
反馈量为电压,产生反馈的是输出电流在电阻上的压降
u
F
= i
o
R
1
(5.2)
电压串联可以理解为全部电压都反馈回去, 而电流串联实际上反馈的并不是全部的电压 (在图中5.25.4的比较可以清晰的看到)
在使用令一者为零另外一个不为零进行组态判断本质上也是在用这样的思想进行的。
68
第五章 反馈 模拟电路笔记 Tsui Dik Sang
5.2.0.3 电压并联反馈
只是反馈的量是电流而已,这里直接给公式了
i
F
=
u
o
R
(5.3)
5.2.0.4 电流并联反馈
i
F
=
R
2
R
1
+ R
2
(5.4)
5.2.1 反馈类型的判断
根据题目的问,
最有可能是判断是哪一种组态,
当然也会出现判断交流还是直流反馈
还会有判断正负反馈
其实笔者认为在细心体会了上面四种组态的电路图后是不需要技巧可以直接出结果的,不过书本上提到的“令一者为零另外一个
不为零”也不失为一种好方法。
5.3 负反馈的抽象分析
˙
A
˙
F
˙
X
o
˙
X
i
˙
X
i
˙
X
f
+
-
5.3.1 负反馈的放大倍数
由于电路中纯在电容之类的电抗元件,因此使用复数来表示放大率甚至是反馈量,给出下面的定义
定义 5.3.1.
˙
A =
˙
X
o
˙
X
i
˙
A =
˙
X
f
˙
X
o
(5.5)
由于是负反馈
˙
X
i
=
˙
X
i
=
˙
X
f
(5.6)
经过一番激烈不过比较简单的推导,可以得到闭环放大倍数
˙
A
f
, 环路放大倍数
˙
A
˙
F
˙
A
f
=
˙
X
o
˙
X
i
=
A
1+AF
˙
A
˙
F =
˙
X
f
˙
X
i
(5.7)
然后书上给了四个抽象分析的图以及一个大大的表格,其实不需要去刻意去记,只需记住“功能”,结合理解,前面的都能推出
来。由于比较难以制作,表格就不放了,请看书本 p231
69
5.3 负反馈的抽象分析 模拟电路笔记 Tsui Dik Sang
5.6: 四种负反馈抽象分析
5.3.2 深度负反馈
然后由前面的推导可以得到
˙
A
f
=
˙
A
1 +
˙
A
˙
F
AF > 0 (负反馈)
AF < 0 (正反馈)
˙
A
˙
F = 1 (自激振荡 (后面会讲到))
(5.8)
AF >> 1
A
f
1
F
(5.9)
z 这就是所谓的深度负反馈,从实质上理解就是实际净输入为零
˙
U
i
˙
U
f
˙
I
i
˙
I
f
(5.10)
5.3.3 虚短虚断
具体的分析请看课本 p238结论就是集成运放的输入可以看到等电位的两个断路。
1
关于虚短虚断的条件,教师一开始讲授
的说是对于深度负反馈才成立,但是笔者发现书上其实并没有强调,实际上,书上仅仅从理想集成运放工作在线性区就推出了这
个结论,在后面的章节中,笔者目前也尚未发现有任何负反馈才能使用虚短虚断的例子
2
,因此认为其成立的条件是:
所有工作在线性区的集成运放
1
笔者意识到这本质上是一个数学抽象,正是通过前面章节一步一步的学习,我们构造出了集成运放这样神奇的东西,目的其实就是为了实现虚短虚断这
样的数学功能‘有了这样的功能,在之后的运算电路以及波形发生器中我们会一直围绕着这个性质展开,在那时的学习中,就会发现知识闭环了,学了
半个学期抽象的东西终于找到了一个具象的应用,我觉得这是一种很好的体验,希望读者能仔细体会—-2024.12.18
2
工作在非线性区倒是出现了不满足虚短但是虚断仍成立的情况,读者可以在之后学习到电压比较器的时候仔细体会,其就是一个工作在非线性区的集成运放
关于其虚断的证明如果认真阅读了 p238 的证明的话应该可以理解。
70
第五章 反馈 模拟电路笔记 Tsui Dik Sang
5.3.4 反馈电路对电路参数的影响
5.3.4.1 反馈系数
对式5.7求微分操作一下,得到
dA
f
A
f
=
1
1 + AF
·
dA
A
(5.11)
这个式子的意义是:引入反馈后稳定性增强了,但是是以等比牺牲放大倍数来实现的。
5.3.4.2 R
i
串联
R
if
=
U
i
I
i
=
U
i
+ U
f
I
i
= (1 + AF )
U
i
I
i
= (1 + AF )R
i
(5.12)
并联:
3
R
if
=
1
1 + AF
R
i
(5.13)
5.3.4.3 R
o
电压:由
I
o
=
U
o
(AF U
o
)
R
o
=
(1 + AF )U
o
R
o
(5.14)
得到
R
of
==
R
o
1 + AF
(5.15)
电流:
4
R
of
= (1 + AF )R
o
(5.16)
5.3.4.4 频带
f
Hf
= (1 + AF )f
H
f
Lf
=
f
L
1+AF
(5.17)
由于 f
H
>> f
L
, 所以
BW
f
(1 + AF )BW (5.18)
也就说频带被展宽了,上面的推导通过
˙
A
u
可推,有兴趣自己看 p245
5.3.4.5 减小非线性失真
原理就是以毒攻毒:
原来: X
o
= AX
i
+ X
o
(X
o
是非线性部分)
原来: X
′′
o
= X
o
AF X
′′
o
(X
′′
o
是反馈后的非线性部分)
X
′′
o
=
X
o
1 + AF
(5.19)
可以看到非线性失真缩小了
1
1+AF
3
推导类似,只是变成了分母电压的拆开,就不推导了
4
同电压推导类似,就不推导了
71
5.4 自激振荡 模拟电路笔记 Tsui Dik Sang
5.3.5 选用合适的反馈
需要理解题目中的一些名词的意思
减小从信号源索取电流的能力 =R
i
增强带负载能力 =R
o
5.4 自激振荡
5.4.1 产生分析
一般的负反馈应满足
˙
A
˙
F > 0, 在中频段,C 不存在阻抗 (4.4.1), 因此一切为实即
φ
A
+ φ
B
= 2 (5.20)
但是在在高频和低频时候,由于阻抗的出现,
˙
A
˙
F 出现了相移,当某一个 f
0
使得
φ
A
+ φ
B
= (2n + 1)π (5.21)
时,那么
˙
A
˙
F < 0 输入量变成了
|
˙
X
i
| = |
˙
X
i
| + |
˙
X
f
| (5.22)
也就是一个好端端的负反馈变成了正反馈,那么只需一个微扰正反馈就会放大这个小信号,使得不需要额外的输入也可以自己震
荡起来,这也就是自激振荡 ,此时没有输入信号,净输入完全由反馈量提供,所以
˙
A
˙
F = 1 (5.23)
并且起振条件要求 |
˙
A
˙
F | > 1, 然后我们可以结合前面频率响应的知识,逐级分析,得到
一级相移最大只有-90°,不满足!
二极虽然有-180° 的相移,但是此时要求 f , 且幅度也是趋于零,不满足
三级的时候就可以了,往后的级也可以
然后是关于高频震荡和低频真的的分析,笔者在书上只看到了一句话
引入放大级数越多,越容易在反馈后产生高频震荡
耦合电容、旁路电容越多,越容易产生低频震荡低频震荡
5.4.2 判断方法
一句话,看相频到达-180°
5
时用 dB 表示的幅频曲线有没有到零。为此设置了两个用于描述其可靠性的指标
定义 5.4.1.
G
m
= 20 lg |
˙
A
˙
F
f=f
0
φ
m
= 180° |φ
A
+ φ
F
|
f=f
c
(5.24)
5.4.3 滞后补偿
5.4.3.1 简单滞后补偿
6
通过加入电容改变
˙
A
˙
F 相频特性,从而达到消除自激振荡的效果 原因是将 f
H1
减少了 (并联的电容相加,导致分母变大)
5
实际上如果有电感的话可能是 +180°,但是在模电里直到现在好像都还没有考虑电感的作用
6
超前补偿貌似不是重点
72
第五章 反馈 模拟电路笔记 Tsui Dik Sang
5.7: 可产生震荡
5.8: 不可产生震荡
5.9: 简单滞后补偿电路
5.10: 简单滞后补偿效果
具体例子见书本 p235
但是这种方法是以牺牲带宽为代价的,对此我们可以改善一下
5.4.3.2 RC 滞后补偿
推导有点迷惑,笔者也还没有理解,对于书中直接给出一个 AF 的三级表达式,笔者理解为这是等效电路,因此必然是三级
以上才可能震荡,对于 9 式如何代入 10 式的尚未理解。
5.11: RC 补偿电路
5.12: RC 补偿效果
5.4.3.3 密勒补偿
一句话就是通过密勒定理打肿脸充胖子
然后就可以通过 Miller 效应实现电阻的增倍,比如图5.14 中,右边的阻抗由于不影响频率特性,可忽略,看中间的那个阻
73
5.4 自激振荡 模拟电路笔记 Tsui Dik Sang
抗,实际上由
R
+
1
jωC
=
R + 1
1
jωC
1 A
2
(5.25)
我们不详细推导,感性看,假如 R=0,则
C
= (1 A
2
)C (5.26)
而其中 A
2
< 0,那么得到的等效电容显然是更大的,那么时间常数就更大了,更改后的上限频率也就越低了。
7
A
1
A
2
R
C
5.13: 变换前原电路
R
Z
C
5.14: 等效电路
超前补偿在教师的 ppt 中也没有出现,估计也是了解即可,估计不考
最后插播一道经典题,综合了分立元件和运放 (题源为华成英模电第六版第一套卷 T4)
求放大倍数
解:首先 KCL
11u
i
10k
+
11u
i
110k
= (β
2
+ β)i (5.27)
对于 u
o
u
o
= 10kβ
2
i (5.28)
两者相除得到
1
12
u
o
u
I
=
β
2
β(β + 1)
=
β
β + 1
1 (5.29)
7
关于等效电路的分析笔者在这里并没有过多展开,请还是回归书本看看原图的推导
74
第六章 信号的运算和处理
6.1 基本运算电路
6.1.1 比例运算电路
6.1: 反相比例运算电路 6.2: T 反相比例电路 6.3: 同相比例电路
6.1.1.1 反相
首先,为了抑制共模!,需要保证运放两段输入的对称性即
R
= R R
f
(6.1)
然后无需多言,用虚短虚断什么公式都可以出来
1
u
o
=
R
f
R
u
I
(6.2)
然后我们分析输入输出电阻
R
i
= R
R
o
= 0
(6.3)
由于引入了反馈,输入电阻不是无穷,因此我们要尽可能加大 R,那这样的话在比例系数较大的情况下由式6.2, 以看到 R
f
而之前讲过,大电阻在模拟电路中是要避免的,因此我们需要改进电路
6.1.1.2 T 形网络反相比例运算电路
也是由虚断虚断可以推
u
o
=
R
2
+ R
4
R
1
1 +
R
1
R
4
R
3
(6.4)
由此可以看到我们可以合理调配,使得比例系数较大时三个电阻都不会很大
1
说一句题外话,笔者认为在引入了反馈的电路中,集成运放就只是一个数学等效工具,负责提供虚短虚断,除此之外并没有什么功能了
75
6.2 加减运算电路 模拟电路笔记 Tsui Dik Sang
6.1.1.3 同相比例电路
对称性也还是要满足的,然后无需多言,直接给公式
u
o
=
1 +
R
f
R
(6.5)
6.1.2 电压跟随器
6.4: 电压跟随器
显而易见,输出等于输入 (也是在虚短虚断的条件下),并且 R=0 并不影响结果。
2
由此其实可以看到,虚短虚断 + 电基就能秒杀运算电路,相比于前面的抽象晶体管,这一章确实友好,无论他电路怎么
变都能现推
6.2 加减运算电路
6.5: 并联加减法电路
6.6: 串联加减法
6.2.1 并联叠加
叠加法直接秒了。我们直接看个最复杂的
格局对称性 R
P
= R
N
R
1
R
2
R
f
= R
3
R
4
R
5
(6.6)
3
然后叠加法 (不算的接地) 即可得
u
o
= R
f
u
I3
R
3
+
u
I4
R
4
u
I1
R
1
u
I2
R
2
(6.7)
2
这里有一个思考,之前共集共基也能实现电压跟随,那为什么还要设计这个呢?实际上,集成运放本身的共模抑制,开环差模增益 因此其性能肯定是比
简单晶体管好很多的,这个无需担心,不然学集成运放干吗。
3
如果这里不对称怎么办?也能算,但是表达式会很复杂,请看书本 p283
76
第六章 信号的运算和处理 模拟电路笔记 Tsui Dik Sang
6.2.2 串联叠加
有并联自然有串联,请看图6.6
u
o
=
R
f2
R
3
u
o1
+
1 +
R
f2
R
3
u
I2
=
R
f2
R
3

1 +
R
f1
R
1
u
I1
+
1 +
R
f2
R
3
u
I2
(6.8)
化简就从略了,其方法有点像是数列递推了。
4
6.3 积分和微分运算
还是叠加原理,只不过电容来了,需要解一下简单的微分方程而已
6.7: 积分电路 6.8: 微分电路 6.9: 实用性微分电路
6.10:
电路
6.3.1 积分电路
直接给结果
u
o
=
1
RC
ˆ
t2
t1
u
I
dt + u
o
(t
1
) (6.9)
6.3.2 微分电路
6.3.2.1 简单微分电路
u
o
= RC
du
I
dt
(6.10)
6.3.2.2 实用性微分电路
在反馈网络上并稳压二极管开限幅
在反馈网络上病例那一个电容 C
1
,从而起到相位补偿的作用 (消除自激振荡)
5
在输入端串联一个电阻 R
1
限流
这就是所谓的实用性微分电路
4
这一部分的笔记并没有严格按照书上的来,因为理论上掌握串联和并联就足够了,如果不清楚的话可看着书一步一步来
5
说实话,具体怎么样实现的并不是很清楚
77
6.4 对指数运算 (不出大题) 模拟电路笔记 Tsui Dik Sang
6.3.2.3 逆函数微分运算电路
思想是作积分的逆运算来实现微分功能
首先我们需要判断电路极性:
现在我们要确定的是 u
I
应该接入 A
1
的同相端还是反相端, 我们先假设 u
I
的瞬时极性为正。
由于要产生负反馈,所以 u
o2
应该要是负电流才能流出产生并联负反馈;
然后根据 A
2
组成的积分电路,根据图6.7可以知道 u
o2
u
o
应该要反相
那么 u
o
的瞬时极性就是正的
所以 u
I
u
o
同相位,其接在 A
1
同相端如图6.10所示
然后相似的虚短虚断分析可以得到
u
o
=
R
2
R
3
C
R
1
·
du
I
dt
(6.11)
【最后,可以看看例 6.1.5,是 PID,用前面的方法易推,可作训练】
6.4 对指数运算 (不出大题)
本质上这个运算借助的的是二极管伏安特性的指数函数
6.4.1 对数运算
6.11: 对数运算 6.12: 晶体管对数运算 6.13: 集成对数运算
6.4.1.1 二极管对数运算
这种改进的依据是
二极管在电流较小时,内部载流子运动不可忽略,
在大电流时内阻也不能忽略,因此指数性不够好,指数范围有限
在虚短虚断和电路基础的基础上再加一个晶体管伏安特性
6
可以推得
u
o
= U
T
ln
u
I
I
S
R
(6.13)
6
u = U
T
ln
i
D
I
S
(6.12)
78
第六章 信号的运算和处理 模拟电路笔记 Tsui Dik Sang
6.4.1.2 晶体管对数运算
7
最终可以推得一样的表达式6.13
6.4.1.3 集成对数运算
无论是二极管还是晶体管,都受温度影响,体现 I
S
的波动上,因此我们应该尝试在表达式中消去 I
S
, 于是就有了集成对
数运算 (6.13) 需要对两个晶体管分别分析,总共分析两次,最后根据蓝线的通路一鼓作气
u
p2
= u
BE2
u
BE1
U
T
ln
u
I
I
R
R
3
(6.15)
至此其实 I
S
已经被消除干净了,但是还有一个 U
T
, 于是再接一个比例运算电路 A
2
,
u
o
1 +
R
2
R
5
U
T
ln
u
I
I
R
R
3
(6.16)
如果我们 R
5
为正温度系数的热热敏电阻,就可以抵消温度增大时 U
T
的增大的影响
8
6.4.2 指数运算
6.14: 指数运算
6.15: 集成指数运算
思路与积分变微分一样图6.14
6.4.2.1 基本指数运算 (晶体管)
容易推得为
u
o
= I
S
e
u
I
U
T
R (6.17)
6.4.2.2 集成指数运算
同理的分析方法来消除 I
S
, U
T
, 由于期末复习紧张,有空再补充。
6.4.3 利用指对数来实现乘除法电路
对数运算电路 I
对数运算电路 II
求和运算电路 指数运算电路
7
用到的是
i
c
= I
S
e
u
BE
U
T
(6.14)
8
这里由于涉及反馈,所以不好乱改 R
2
,因此改 R
5
(教师观点,不过我尚未找到什么表达式来支撑着观点)
79
6.5 误差与性能 (从略) 模拟电路笔记 Tsui Dik Sang
6.5 误差与性能 (从略)
后面的集成运放指标貌似 ppt 里面没有,从略
6.6 模拟乘法器
6.6.1 抽象分析
6.16: 模拟乘法器
其中理想情况下
r
i1
, r
i1
r
o
0
• k 为恒定常数
当输入为零时输出也为零 (没有失调电压、电流和噪声)
在实际中有的乘法器稚嫩放大 u
,
u
Y
在某个象限或者某几个象限的情况,下面会根据具体电路分析
6.6.2 变跨导型模拟乘法器
6.17: 差分放大电路
6.18: 二象限模拟乘法器
80
第六章 信号的运算和处理 模拟电路笔记 Tsui Dik Sang
6.6.2.1 差分电路的差模传输特性
之前我们不是推过了吗?不过这里的推导还是有不一样的点的,我们使用跨导来推, 还是有点难的,因此直接给结论,推导
看注释
9
u
X
<< 2U
T
时,有
u
o
g
m
R
c
u
X
(6.24)
6.6.3 可控恒流源差分放大电路 (增添 u
Y
)
再增添适用条件 u
Y
>> u
BE3
,
10
u
o
R
c
2U
T
R
e
· u
X
u
Y
= ku
X
u
Y
(6.27)
6.6.4 四象限跨导乘法器
有点类似于将 u
Y
也改成一个差分电路,时间有限,此部分先从略给出结论
u
o
=
I
4U
2
T
u
X
u
Y
(6.28)
6.6.5 乘法器的组合运用
实际上这一章是数学,通过乘法器与已有运算电路的组合实现多种运算。
6.6.5.1 乘方运算
两个输入连起来就是
9
首先回忆一下什么是跨导
g
m
=
I
EQ
U
T
=
I
0
2U
T
(6.18)
其中恒流电源
I
0
i
E1
+ i
E2
= I
S
e
u
BE1
U
T
+ I
S
e
u
BE2
U
T
=I
S
e
u
BE2
U
T
(
1 + e
u
BE1
u
BE2
U
T
)
=i
E
(
1 + e
u
BE1
u
BE2
U
T
)
综合上面两个式子,得到
i
E2
=
I
0
1 + e
u
X
U
T
(6.19)
如果上面提取的公因数不同,那么久可以得到
i
E1
=
I
0
1 + e
u
X
U
T
(6.20)
综合上面就可以得到,当 u
X
<< 2U
T
时,
i
C1
i
C2
i
E1
i
E2
I
0
·
u
X
2U
T
(6.21)
I
0
·
u
X
2U
T
= g
m
u
X
(6.22)
所以输出
u
o
g
m
R
c
u
X
(6.23)
10
在图6.18
i
c3
= I
0
=
u
Y
u
BE3
R
e
(6.25)
代入6.22得到
u
o
=
u
Y
u
BE3
R
e
·
u
X
2U
T
· R
c
R
c
2U
T
R
e
· u
X
u
Y
= ku
X
u
Y
(6.26)
81
6.7 滤波电路 模拟电路笔记 Tsui Dik Sang
6.19: 平方运算 6.20: 平方根运算 6.21: 除法运算 6.22: 高次方根运算
6.23: 高次方根运算
6.6.5.2 除法运算
组合类似,但是这里需要注意一个点:极性。图中的符号已经标得很清楚了,
6.6.5.3 平方根运算
也是很好理解的
6.6.5.4 高次方运算 & 高次方根运算
同理可推
6.7 滤波电路
6.7.1 无源滤波
这个太熟了,笔者最后的模电大作业做的就是一个关于无源滤波的电路,无源滤波的缺点是随负载选频范围和放大倍数会变,
(而笔者做的那个项目就设计了一个特殊滤波器保证了较强的抗干扰能力) 那其实没什么好说的,自己看课本
f =
1
2πRC
(6.29)
本质上就是加一个电压跟随器,而其前级与无源滤波电路基本没有什么大区别,
6.7.2 低通滤波
这里又引入了一个叫传递函数的概念,不过实际上只是把 jω s 代替了而已,对于低通,有
6.7.2.1 一阶电路:
A
u
(s) = ··· =
1 +
R
2
R
1
·
1
1 + sRC
(6.30)
然后定义
˙
A
up
= 1 +
R
2
R
1
(6.31)
1
2
来判断截止频率,得 f
p
= f
0
=
1
2πRC
82
第六章 信号的运算和处理 模拟电路笔记 Tsui Dik Sang
6.7.2.2 二阶电路:
同样可以推导出
A
u
(s) =
1 +
R
2
R
1
1
1 + 3sRC + (sRC)
2
(6.32)
可以看到这里分母的 s 是二阶的,因此二阶电路也可以用这样的方法来判断,一样的方法去算截止频率,解得 f
p
0.37f
0
6.7.2.3 压控电压源低通滤波
本质上是想引入恰当的正反馈来改善电路在 f
0
附近的放大倍数 如图6.25,通过一通 KCL 等联立求解,得
6.24: 二阶低通
6.25: 压控二阶低通
6.26: 无限增益低通
A
u
(s) =
A
up
(s)
1 + [3 A
up
(s)]sRC + (sRC)
2
=
˙
A
up
1
f
f
0
2
+ j(3
˙
A
up
(s)
f
f
0
)
(6.33)
我们令 Q =
1
3
˙
A
up
得到
|c|
f
= f
0
= Q
˙
A
up
(6.34)
2 <
˙
A
up
< 3, 则得到改善且不产生自己震荡
11
6.7.2.4 反向输入
本质上思路不变,只是出于放大电路不同,从而使得 A
up
有所不同而已,这里不再赘述,
不过可以说说他的无限增益多路反馈二阶低通滤波电路得到
A
u
(s) =
A
up
(s)
1 + sC
2
R
2
F
f
1
R
1
+
1
R
2
+
1
R
f
+ s
2
C
1
C
2
R
2
R
f
(6.35)
类比得到
f
0
=
1
2π
C
1
C
2
R
2
R
f
Q = (R
1
R
2
R
f
)
q
C
1
R
2
R
f
C
2
(6.36)
对于更高阶的电路直接串联即可
6.7.3 高通滤波
同理可退,也有所谓的无限增益,并且其与低通在 R C 上具有对偶性,
6.7.4 带通滤波
一个朴实无华的想法是将高通滤波与低通滤波串联,这是一个好方法,然而在实际中有更加有效的电路
11
如果超过 3,在 3 附近就会产生自己震荡
83
6.7 滤波电路 模拟电路笔记 Tsui Dik Sang
6.27: 无限增益高通
6.28: 带通电路
6.29: T 带阻
6.30: 实用性带阻
6.7.4.1 压控电压源带通滤波
较繁琐,自己看课本 p314
6.7.5 带阻滤波
6.7.5.1 T 带阻滤波
也请自己看吧
6.7.5.2 实用型带阻
相当于加了一个正反馈,时间紧张,也请自己看吧
6.7.6 全通 or 状态变量
不考,那我也不做笔记了。
84
第七章 波形的发生和信号的转换
7.1 电压比较器
7.1.1 抽象定义
就是三个量:U
OH
, U
OL
, U
T
由于没有了反馈,对于理想集成运放,线性区只有一丁点,因此虚断不在成立,但是输入电阻无穷达到 1 结论仍然成立。
分为单限比较器、滞回比较以及窗口比较器三种。
7.1: 单限比较器
7.2: 一般单限比较器
7.1.2 单限比较器
7.1.2.1 过零比较器
属于是 helloworld 的内容,顶多就是在输入端、输出端、或者跨阶段稳压管限幅之类的。
7.1.2.2 一般单限比较器
用叠加法可推
U
T
=
R
2
R
1
U
REF
(7.1)
正相反相接法只影响曲线走向,并不影响 U
T
7.1.3 滞回比较器
为什么要搞这个这么复杂的比较器呢?为了提高抗干扰能力!
7.1.3.1
对称的滞回比较器
容易推得
1
±U
T
= ±
R
1
R
1
+ R
2
· U
Z
(7.2)
1
注意,虽然这有两条式子,但是分析时需要从两个方向各推一次,等一下推一般滞回比较器的时候就清晰了
85
7.1 电压比较器 模拟电路笔记 Tsui Dik Sang
7.3: 对称一般滞回比较器
7.4: 一般滞回比较器
7.1.3.2 一般滞回比较器
这个就必须从两个方向分析了,同样需要对有参考电压的这一端应用叠加定理,最终推导得
U
T 1
=
R
2
R
1
+R
2
U
REF
R
1
R
1
+R
2
U
Z
U
T 2
=
R
2
R
1
+R
2
U
REF
+ fr acR
1
R
1
+ R
2
U
Z
(7.3)
7.1.3.3 更一般的滞回比较器
2
如果我想要改变 |U
T 2
U
T 1
| 呢?,这就需要更改稳压管了,使得其正向稳压和反向稳压不一样,代入上面的7.3 就能得到
不一样的差,当然,如果真的要调稳压管,以为着 U
OH
, U
OL
也会变化我猜这也是课本上没有提及的原因吧
7.1.4 窗口比较器
7.5: 窗口比较器
这是一个基本的窗口比较器,请读者自己应用数学知识分析
7.1.5 集成电压比较器
万变不离其中,读懂管脚即可
2
课本上没有
86
第七章 波形的发生和信号的转换模拟电路笔记 Tsui Dik Sang
7.2 非正弦信号发生器
7.2.1 矩形波发生器
7.2.1.1 一般矩形波发生器
7.6: 矩形波发生
实质是围着右边的图在顺时针转圈,,推导的话需要用到电基里面电容充放电的知识,先从略,直接给周期结论
T = 2R
3
C ln
1 +
2R
1
R
2
(7.4)
记住这个式子,就很容易知道怎么样去改变周期了。
7.2.1.2 占空比可调的矩形波发生器
增加一个二极管并联模块并与滑阻串联,就可以通过改变充放电时间常数来调节占空比了。最终得到
T = T
1
+ T
2
(R
w
+ 2R
3
)C ln
1 +
2R
1
R
2
(7.5)
占空比
q =
T
1
T
2
R
w1
+ R
3
R
w
+ 2R
3
(7.6)
7.2.2 三角波发生电路
思路是,在矩形波的基础上做积分,实际上也确实如此,不够我们可以引入反馈从而消去一个电容,降低延迟,那么此时 A
1
就要使用同相端输入了 这个电路分析的技巧性相当强,需要根据实际数据自己列积分式计算, 这里只能总结一些方法
7.7: 三角波原始
7.8: 三角波改进
确定方波的峰值 (这个一般很好确定,看工作电压即可)
根据虚短虚断确定出 U
T
87
7.3 正弦信号发生电路 模拟电路笔记 Tsui Dik Sang
列出积分式子,根据积分的下限以确定出周期
整理可得
T =
4
R
1
R
3
C
R
2
(7.7)
7.2.3 锯齿波发生电路
7.2.3.1 频率不变的锯齿波
在刚刚的三角波发生电路中引入二极管并联模块并与滑阻串联即可,其本质上是对三角波的一个边压缩至近似于垂直,占空
比等的表达式与矩形波的基本类似,这里不再赘述。
7.2.3.2 频率增倍的锯齿波 (三角波转锯齿波)
7.9: 三角-锯齿
7.10: 三角-锯齿图
这个设计很巧妙的利用电子开关起了一个 if 的作用,对一边的三角波进行了一个反向处理,完美实现了锯齿波
3
具体的推导
从略,自己体会。
7.2.4 更多发生器以及其相组合
我赌他不考,因为甚至都还没有学
7.3 正弦信号发生电路
实际上让电路定向产生我们想要的单一频率正弦信号是非常困难的,因此我们退而求其次,让其通过“自激振荡”产生一些
周期性的波形,通过傅里叶分解其一定含有丰富的波形,然后我们再通过选频得出我们想要的波形。
7.3.1 原理
既然要产生自激振荡,那么
˙
A
˙
F = 1 (7.8)
4
起振要求还是 |
˙
A
˙
F | > 1, 并且需要加入一定的非线性,根据不动点的原理才能达到稳定震荡 (??7.13)
3
然而这个电路终究还是有近似成分的,笔者在一次仿真作业中使用一个型号的晶体管得到的锯齿波是交替性高矮不齐的,更换运放之后又可以了
4
由于这里是名正言顺地引入的是正反馈,所以不再是偷偷摸摸的-1 而是 1 啦,(看图7.11的符号)
88
第七章 波形的发生和信号的转换模拟电路笔记 Tsui Dik Sang
7.11: 正反馈
7.12: 非线性 1
7.13: 非线性‘
7.3.1.1
组成部分
放大电路
选频网络
正反馈网络
稳幅
7.3.1.2 判断方法
• Q (Q 点选不好甚至工作不了)
相位条件 (实则就是判断是否满足正反馈)
振幅的起振条件
7.3.2 RC 正弦振荡 (文氏桥震荡电路)
7.3.2.1 选频网络
7.14: 文氏桥选频
89
7.3 正弦信号发生电路 模拟电路笔记 Tsui Dik Sang
通常选取
R
1
= R
2
= R
C
1
= C
2
= C
对于高低频可以分开等效,如右边两个图,真的可以完美等效!
推论 7.3.1. 必有一个 f
0
使得
˙
U
F
˙
U
o
同相。
推得
˙
F = ··· =
1
3 + j
ωRC
1
ωRC
=
1
3 + j
f
f
0
f
0
f
(7.9)
其中 f
0
=
1
2πRC
可以得到其幅频特性和相频特性曲线 根据式7.8, f = f
0
,
˙
F =
1
3
,则需要
7.15: 正弦振荡幅频特性与相频特性
˙
A = 3 (7.10)
如果是要起振的话还需要
˙
A 3, 因此电路如图7.16所示,省略运放就可以变成 b 图的样子,类似于桥,这也正是名字由来
7.16: RC
振荡电路
根据同相比例运算电路的特性可以得到
˙
A
u
= 1 +
R
f
R
3 (7.11)
得到 R
f
2R
1
7.3.2.2 可调频率的电路
调电容用于粗调
调电阻用于微调
7.3.3 LC 振荡电路
赶不及了,不讲就是不考,所以这部分先从略了 (虽然作业里面有)
90
第八章 功率放大电路
8.1 定义
8.1.1 性能指标
8.1.1.1 最大输出功率 (有效值!)P
om
也就是输出给负载的功率
P
om
=
U
2
om
R
L
(8.1)
8.1.1.2 转换效率 η
输出最大功率与电源提供功率有效值的比值
η =
P
om
P
v
(8.2)
8.1.2 分析方法:图解法
因为是大信号作用,用近似法不合适,尤其是不能近似 U
CES
, 因此使用图解法
1
8.2 具体类型
8.2.1 甲类:晶体管在整个周期都导通
8.2.2 单管变压器耦合放大电路
8.1: 甲类单管变压器耦合放大电路
看右端的图线计算
2
, 效率约为 50%,
1
顺便吐槽一下,书本上 p405 对面积的解释可以相当抽象牵强,并没有实际物理意义,看看图上的线即可,其目的可能是想让你回想一下什么是交流负载线,
如果忘记的请复习2.1.3.4
2
已合理配置了
N
1
N
2
91
8.3 互补输出级 模拟电路笔记 Tsui Dik Sang
8.2.2.1 缺点
效率相当的低,根本原因是: 无论是否有输入信号,BJT 都处于导通状态
8.2.2.2 优点
不会出现截止失真的情况,适合做高质量耳机
3
8.2.3 乙类:只有半个周期导通 (推挽)
8.2: 乙类变压器 8.3: OTL 8.4: OCL
8.2.3.1 变压器耦合
8.2.3.2 OTL
8.2.3.3 OCL
本质上类似于互补输出级,时间有限,请自己看了,
8.3 互补输出级
8.3.1 改善
具体参见前面学的互补输出级,就是加入 R
1
, R
2
, D
1
, D
2
, D
3
使得后面的两个管子都处于微导通状态。
8.3.2 计算步骤
8.3.2.1 P
om
先求 U
om
,已知在临界状态下管子处于饱和状态,通过这个条件来求峰值
4
,进而得到有效值
U
om
=
V
CC
U
CES1
2
(8.3)
3
百度百科的说法
4
下面的管子是对称的,因此无需再求
92
第八章 功率放大电路 模拟电路笔记 Tsui Dik Sang
进而得到
P
om
=
U
2
om
R
L
(8.4)
8.3.2.2 P
v
也就是电源的输出功率,电压我们知道了,但是电流不知道,通过积分来求
5
P
v
=
2
π
·
V
CC
(V
CC
U
CES
)
R
L
(8.7)
8.3.2.3 η
求得
η =
P
om
P
v
=
π
4
·
V
CC
U
CES
V
CC
(8.8)
如果作保守估计 (也就是求最大值),那么 U
CES
可以忽略,得到
η
π
4
78.5% (8.9)
8.3.3 晶体管参数选择
之前说过,功率放大电路的晶体管都是要往极限参数去选的,因此讨论其参数选择就很重要了。
8.3.3.1 最大管压降
在半个导通周期内,管子要承受
6
u
CE2M AX
= 2V
CC
U
CES
2V (8.10)
8.3.3.2 集电极最大电流
I
CM AX
=
V
CC
U
CES
R
L
V
CC
R
L
(8.11)
8.3.3.3 集电极最大功耗
同样要使用积分法 (积分具体请看书本了),得到
P
T
=
1
R
L
V
CC
U
OM
π
U
2
om
4
(8.12)
取导数为零就可以得到最大值点和最大值
U
om
=
2
π
· V
CC
0.6V
CC
P
T M AX
=
V
CC
π
2
R
L
(8.13)
如果是做保守估计 (U
CES
0), 那么
P
T M AX
= 0.2P
om
U
CES=0
(8.14)
5
i
c
=
V
CC
U
CES
R
L
sin ωt (8.5)
因此
P
v
=
1
π
ˆ
π
0
V
CC
U
CES
R
L
sin ωt · V
CC
d(ωt) =
2
π
·
V
CC
(V
CC
U
CES
)
R
L
(8.6)
6
也是使用保守估计进行约分,即“”实为
93
8.3 互补输出级 模拟电路笔记 Tsui Dik Sang
8.3.3.4 总结
综上
U
(BR)CEO
> 2V
CC
I
CM
>
V
CC
R
L
P
CM
> 0.2P
om
U
CES
=0
(8.15)
94
第九章 直流电源
本质上就是要把有波动的交流市电尽可能的转化成波动较小的单向直流电。
定义 9.0.1. 脉动系数: 输出电压峰值与输出电压基波平均值之比
S =
U
O1M
U
O(AV )
(9.1)
9.1 整流电路
9.1.1 单相半波整流
9.1.1.1 波形分析
简单粗暴利用二极管的单向导通性,切去负半轴的电压部分算出有效值以及脉动系数
1
U
O(AV )
=
2U
2
π
0.45U
2
S =
U
2
/
2
2U
2
/π
=
π
2
1.57
(9.2)
9.1.1.2 二极管参数选择
电流 1.1
0.45U
2
R
L
,
电压 1.1
2U
2
2
9.1.2 单相桥式整流
尝试去把负半轴的电压映射到正半轴。其结构其实有点类似于初中物理电动机那里提到的电刷。
9.1.2.1 故障分析
任意有一个二极管接反了,电路就会在一个周期内短路烧坏!
9.1.2.2 整流分析
计算是半波整流的两倍,脉动系数也可求
U
O(AV )
=
2
2U
2
π
0.9U
2
S =
2
3
0.67
(9.3)
9.1.2.3 二极管选择
与半波整流一样!
1
由于涉及谐波分析,这一部分在考试中应该不要求计算
2
考虑波市电 10% 的波动
95
9.2 滤波电路 模拟电路笔记 Tsui Dik Sang
9.1.3 中点接地的桥式整流
不考,但是题目有涉及,可以了解一下,重点是二极管电压波形图!
9.1: 单相桥式整流电路
9.2: 电容型滤波电路
9.3: 导通角
9.2 滤波电路
9.2.1 电容滤波
从物理学的角度,这本质上利用的是一个能量的连续性,从而使得电压曲线趋于平缓。
推导还是复杂的,有兴趣的直接看书,前当 R = , U
O(AV )
=
2U
2
教师说只需要记住
定理 9.2.1. R
L
C = (3 5)
T
2
时,U
O(AV )
= 1.2U
2
9.2.1.1 导通角与脉动系数的矛盾
定义 9.2.1. 导通角:
θ = 2π ·
t
T
(9.4)
其中 t 是二极管在一个周期内的导通时间
根据前面的一通推导 (不要求掌握,所以请看书), 脉动系数得
s =
1
4
R
L
C
T
1
(9.5)
可以看到如果想要脉动系数小,R
L
C 要小,然而最终就会推出二极管的导通角就会变小,并且其峰值电流也会变大,那对二极
管的要求也就越高,
9.2.2 电感滤波
U
O(AV )
0.9U
2
(9.6)
并且电感性滤波电路适合电流性负载,负载电阻很小的情况。并且其导通角也比较大。
9.2.3 倍压整流电路
利用 C 来储存电荷,在下半个周期与电源一起放出,
96
第九章 直流电源 模拟电路笔记 Tsui Dik Sang
9.4: 稳压管稳压电路
9.5: 基本调整管电路
9.6: 环节
9.3 稳压电路
9.3.1 抽象性能参数
9.3.1.1 稳压系数
S
r
=
U
I
U
o
·
U
o
U
I
R
L
=常数
(9.7)
越小越好,表示的是输入扰动对稳压性能的影响
9.3.1.2 输出电阻
R
o
=
U
o
I
o
U
I
=常数
(9.8)
当然也是越小越好,表示的是负载扰动对稳压性能的影响
9.3.2 稳压管稳压电路
就是一个负反馈!,分析是很简单的。在二极管电阻 r
z
<< R, 且负载电阻也远远大于二极管的情况下
S
r
r
z
R
·
U
I
U
Z
R
o
= R r
z
r
z
(9.9)
9.3.2.1 稳压范围
需要使得稳压管工作在稳压区又不至于烧坏。即稳压电流范围
I
稳压
[I
min
, I
m
ax] (9.10)
9.3.2.2 限流电阻 R 的选择
要满足
二极管能工作在稳压区
又没有烧坏
推导具有很强的针对性,因此有兴趣的看书,这里直接给结论
R
U
Imax
U
Z
I
Z
+ I
Lmin
,
U
Imin
U
Z
I
Z
+ I
Lmax
(9.11)
97
9.3 稳压电路 模拟电路笔记 Tsui Dik Sang
9.3.3 串联型稳压电路
9.3.3.1 基本调整管电路
如图9.5,本质上也是一个反馈电路,只不过三极管就有了一个放大倍数,范围更广了
I
稳压
[βI
min
, βI
m
ax] (9.12)
9.3.3.2 具有放大环节的串联型稳压电路
如图9.6所示,使用虚短虚断可以求出
U
o
=
1 +
R
1
+ R
′′
2
R
2
+ R
3
U
Z
(9.13)
其中 R
′′
2
是上端的,另外一个是下端的。题目可能会变,但本质上还是虚短虚断。
9.3.4 三端稳压器:W7800
9.7: W7800 基本应用电路
9.8: W7800 输出可调电路
9.9: W7800 电流
9.10: w7800 实用性输出可
电路
W7800 的输出端和调整端具有比较稳定的压降
9.3.4.1 基本应用电路
二极管是用于给 C
0
放电从而不烧坏稳压管的
C
0
是用于消除高频噪声的
9.3.4.2 电流扩展基本电路
一句话就是将放大和稳压结合!
从而像基本调整管电路一样扩大电流变化范围
另一方面当 U
BE
= U
D
时也抵消了晶体管压降对稳压的影响
U
o
= U
o
+ U
D
U
BE
I
Lmax
= (1 = β)(I
Omax
I
R
)
(9.14)
98
第九章 直流电源 模拟电路笔记 Tsui Dik Sang
9.3.4.3 输出电压可调的稳压电路
容易得到
U
o
=
1 +
R
2
R
1
· U
o
+ I
w
R
1
(9.15)
9.3.4.4 实用性输出可调电路 (增添集成运放)
类似的操作
R
1
+ R
2
+ R
3
R
1
+
R
2
· U
o
U
o
R
1
+ R
2
+ R
3
R
1
· U
o
(9.16)
在习题中还看到一道改进了一下的电路
求输出电压表达式
笔者一开始被题解中短短的一行 U
R
=
R
1
R
1
+R
2
U
REF
迷惑,以为是分压,后看 b 站题解发现没有这么简单
解:首先参考电压是已知的,在图中就是
U
REF
= U
o
U
A
(9.17)
然后根据 KCL
U
o
U
R
2
=
U
U
A
R
1
(9.18)
并且由右边的分压定理有
U
= U
+
=
R
4
+ R
5
R
3
+ R
4
+ R
5
· U
o
(9.19)
联立上面三式可以消去 U
A
最终一步得到
U
o
=
R
2
R
1
+ R
2
·
R
3
+ R
4
+ R
5
R
3
+ R
4
R
4
· U
REF
(9.20)
其中 R
4
是下端的电阻,取其为零或者 R
4
即可得到最大值和最小值。这个答案虽然没有直接得到官方题解的“分压”式
子,但是逻辑更加容易接受。
9.3.5 三端变压器:W1117
只能说应用是完全一样的,且其有一个有点就是调整端的输出电流极小 (不过貌似前面的管子也有)
99
9.3 稳压电路 模拟电路笔记 Tsui Dik Sang
100
第十章 笔记完结
至此,考试内容的笔记就已经做完了,其中可能有一些疏
漏,请各位读者指正!
Tsui Dik Sang
—2025.1.4
101